1887

Abstract

Strain LBB3 isolated from Bogoria soda lake in Kenya is an alkaliphilic, Gram-positive, strictly aerobic, non-motile, spore-forming bacterium. It was identified as a member of the genus on the basis of phenotypic and phylogenetic analyses. The organism grows optimally at 37 °C and pH 10. The G+C content of the genomic DNA is 37·5 mol%. 16S rRNA gene sequence analysis showed 95 and 96 % sequence similarity with (DSM 8715) and (DSM 485), respectively. Furthermore, DNA–DNA hybridization against these two species showed 39·0 and 55·5 % similarity, respectively. Based on our observations, strain LBB3 is proposed to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is LBB3 (=ATCC BAA-922=LMG 22234).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63318-0
2005-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550899.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63318-0&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1997; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  3. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  4. Fritze D., Flossdorf J., Claus D. 1990; Taxonomy of alkaliphilic Bacillus strains. Int J Syst Bacteriol 40:92–97 [CrossRef]
    [Google Scholar]
  5. Gessesse A., Gashe B. A. 1997; Production of alkaline protease by an alkaliphilic bacteria isolated from an alkaline soda lake. Biotechnol Lett 19:479–481 [CrossRef]
    [Google Scholar]
  6. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  7. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  8. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  655–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  9. Logan N. A., Berkeley R. C. 1984; Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882
    [Google Scholar]
  10. Maidak B. L., Cole J. R., Lilburn T. G. 9 other authors 2000; The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174 [CrossRef]
    [Google Scholar]
  11. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  12. Martins R. F., Davids W., Abu Al-Soud W., Levander F, Rådström P., Hatti-Kaul R. 2001; Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5:135–144 [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  14. Nielsen P., Rainey F. A., Outtrup H., Priest F. G., Fritze D. 1994; Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus . FEMS Microbiol Lett 117:61–66 [CrossRef]
    [Google Scholar]
  15. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  18. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  19. Vargas V. A., Delgado O. D., Hatti-Kaul R., Mattiasson B. 2004; Lipase-producing microorganisms from a Kenyan alkaline soda lake. Biotechnol Lett 26:81–86 [CrossRef]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  21. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63318-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63318-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error