1887

Abstract

A bacterial strain, designated PALXIL04, was isolated from the phyllosphere of . Phylogenetic analysis placed the isolate within the genus with the closest relatives being and . DNA–DNA hybridization measurements showed low DNA relatedness (15–20 %) between the isolate and its closest relatives. Cells were Gram-variable, facultatively anaerobic, motile, sporulating rods. Catalase and oxidase were produced by the organism. Cellulose, starch, aesculin and xylan were hydrolysed. Growth was supported by many carbohydrates as the carbon source. MK-7 was the predominant menaquinone and anteiso-C the major fatty acid. The G+C content of the DNA was 50·7 mol%. Phylogenetic, DNA–DNA relatedness and phenotypic analyses indicated that strain PALXIL04 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PALXIL04 (=LMG 22192=CECT 5862).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63323-0
2005-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550743.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63323-0&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D. 1994; Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB , List no. 51. Int J Syst Bacteriol 44:852–853 [CrossRef]
    [Google Scholar]
  2. Aÿ J., Goetz F., Borriss R., Heinemann U. 1998; Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc Natl Acad Sci U S A 95:6613–6618 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA sequences. Int J Syst Bacteriol 45:240–245 [CrossRef]
    [Google Scholar]
  5. Dasman Kajiyama S., Kawasaki H., Yagi M., Seki T., Fukusaki E., Kobayashi A. 2002; Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune . Int J Syst Evol Microbiol 52:1669–1674 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  9. Hespell R. B. 1996; Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Curr Microbiol 32:291–296 [CrossRef]
    [Google Scholar]
  10. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  11. Kanzawa Y., Harada A., Takeuchi M., Yokota A., Harada T. 1995; Bacillus curdlanolyticus sp. nov. and Bacillus kobensis sp. nov., which hydrolyze resistant curdlan. Int J Syst Bacteriol 45:515–521 [CrossRef]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001 Molecular Evolutionary Genetics Analysis software Tempe, AZ: Arizona State University;
    [Google Scholar]
  14. Lee H. J., Shin D. J., Cho N. C., Kim H. O., Shin S. Y., Im S. Y., Lee H. B., Chum S. B., Bai S. 2000; Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol Lett 22:387–392 [CrossRef]
    [Google Scholar]
  15. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  16. Morales P., Madarro A., Flors A., Sendra J. M., Pérez-González J. A. 1995; Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa . Enzyme Microb Technol 17:424–429 [CrossRef]
    [Google Scholar]
  17. Nielsen P., Sorensen J. 1997; Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumillus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192 [CrossRef]
    [Google Scholar]
  18. Peix A., Rivas R., Mateos P. F., Martínez-Molina E., Rodríguez-Barrueco C., Velázquez E. 2003; Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro . Int J Syst Evol Microbiol 53:2067–2072 [CrossRef]
    [Google Scholar]
  19. Rivas R., Velázquez E., Valverde A., Mateos P. F., Martínez-Molina E. 2001; A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22:1086–1089 [CrossRef]
    [Google Scholar]
  20. Rivas R., Sánchez M., Trujillo M. E., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Velázquez E. 2003; Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree ( Ulmus nigra ). Int J Syst Evol Microbiol 53:99–103 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis . Int J Syst Bacteriol 47:299–306 [CrossRef]
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  25. Uffen R. L. 1997; Xylan degradation, a glimpse at microbial diversity. J Ind Microbiol Biotechnol 19:1–6 [CrossRef]
    [Google Scholar]
  26. Velázquez E., de Miguel T., Poza M., Rivas R., Rosselló-Mora R, Villa T. G. 2004; Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54:59–64 [CrossRef]
    [Google Scholar]
  27. Zamost B. L., Nielsen H. K., Starnes R. L. 1991; Thermostable enzymes for industrial applications. J Ind Microbiol 8:71–82 [CrossRef]
    [Google Scholar]
  28. Zimmermann O., Spröer C., Kroppenstedt R. M., Fuchs E., Köchel H. G., Funke G. 1998; Corynebacterium thomssenii sp. nov., a Corynebacterium with N -acetyl- β -glucosaminidase activity from human clinical specimens. Int J Syst Bacteriol 48:489–494 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63323-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63323-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error