1887

Abstract

A group of slowly growing photochromogenic mycobacteria was isolated from Chesapeake Bay striped bass () during an epizootic of mycobacteriosis. Growth characteristics, acid-fastness and 16S rRNA gene sequencing results were consistent with those of the genus . Biochemical reactions, growth characteristics and mycolic acid profiles (HPLC) resembled those of , a non-pigmented mycobacterium also isolated during the same epizootic. Sequencing of the 16S rRNA genes, the gene encoding the exported repeated protein () and the gene encoding the 65 kDa heat-shock protein () and restriction enzyme analysis of the gene demonstrated that this group of isolates is unique. Insertion sequences associated with , IS and IS, were detected by PCR. These isolates could be differentiated from other slowly growing pigmented mycobacteria by their inability to grow at 37 °C, production of niacin and urease, absence of nitrate reductase, negative Tween 80 hydrolysis and resistance to isoniazid (1 μg ml), -nitrobenzoic acid, thiacetazone and thiophene-2-carboxylic hydrazide. On the basis of this polyphasic study, it is proposed that these isolates represent a novel species, sp. nov. The type strain, L15, has been deposited in the American Type Culture Collection as ATCC BAA-883 and the National Collection of Type Cultures (UK) as NCTC 13318.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63343-0
2005-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551139.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63343-0&mimeType=html&fmt=ahah

References

  1. Belas R., Fallon P., Hannaford A. 1995; Potential applications of molecular biology to the study of fish mycobacteriosis. Annu Rev Fish Dis 5:133–173 [CrossRef]
    [Google Scholar]
  2. Brown B. A., Springer B., Steingrube V. A. 10 other authors 1999; Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: a cooperative study from the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 49:1493–1511 [CrossRef]
    [Google Scholar]
  3. Brunello F., Ligozzi M., Cristelli E., Bonora S., Tortoli E., Fontana R. 2001; Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp 65 gene. J Clin Microbiol 39:2799–2806 [CrossRef]
    [Google Scholar]
  4. Chemlal K., Huys G., Laval F. 8 other authors 2002; Characterization of an unusual mycobacterium: a possible missing link between Mycobacterium marinum and Mycobacterium ulcerans . J Clin Microbiol 40:2370–2380 [CrossRef]
    [Google Scholar]
  5. de Mendonça-Lima L., Picardeau M., Raynaud C. 7 other authors 2001; Erp, an extracellular protein family specific to mycobacteria. Microbiology 147:2315–2320
    [Google Scholar]
  6. de Mendonça-Lima L., Bordat Y., Pivert E., Recchi C., Neyrolles O., Maitournam A., Gicquel B., Reyrat J.-M. 2003; The allele encoding the mycobacterial Erp protein affects lung disease in mice. Cell Microbiol 5:65–73 [CrossRef]
    [Google Scholar]
  7. Devallois A., Goh K. S., Rastogi N. 1997; Rapid identification of mycobacteria to species level by PCR-restriction fragment length polymorphism analysis of the hsp 65 gene and proposition of an algorithm to differentiate 34 mycobacterial species. J Clin Microbiol 35:2969–2973
    [Google Scholar]
  8. Dobos K. M., Quinn F. D., Ashford D. A., Horsburgh C. R., King C. H. 1999; Emergence of a unique group of necrotizing mycobacterial diseases. Emerg Infect Dis 5:367–378 [CrossRef]
    [Google Scholar]
  9. Floyd M. M., Guthertz L. S., Silcos V. A., Duffey P. S., Jang Y., Desmond E. P., Crawford J. T., Butler W. R. 1996; Characterization of an SAV organism and proposal of Mycobacterium triplex sp. nov. J Clin Microbiol 34:2963–2967
    [Google Scholar]
  10. Goodfellow M., Magee J. G. 1998; Taxonomy of mycobacteria. In Mycobacteria I Basic Aspects pp  1–71 Edited by Gangadharam P. R. J., Jenkins P. A. New York: Chapman Hall;
    [Google Scholar]
  11. Hazra R., Floyd M. M., Sloutsky A., Husson R. N. 2001; Novel mycobacterium related to Mycobacterium triplex as a cause of cervical lymphadenitis. J Clin Microbiol 39:1227–1230 [CrossRef]
    [Google Scholar]
  12. Heckert R. A., Elankumaran S., Milani A., Baya A. 2001; Detection of a new Mycobacterium species in wild striped bass in the Chesapeake Bay. J Clin Microbiol 39:710–715 [CrossRef]
    [Google Scholar]
  13. Kapur V., Li L. L., Hamrick M. R. 10 other authors 1995; Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 119:131–138
    [Google Scholar]
  14. Kent P. T., Kubica G. P. 1985 Public Health Laboratory. A Guide for the Level III Laboratory US Department of Health and Human Services Publication; no. (CDC)86–8230 Atlanta: Centers for Disease Control;
    [Google Scholar]
  15. Kusuda R., Kawakami K., Kawai K. 1987; A fish-pathogenic Mycobacterium sp. isolated from an epizootic of cultured yellowtail. Nippon Suisan Gakkaishi 53:1797–1804 (in Japanese [CrossRef]
    [Google Scholar]
  16. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  17. Leclerc M.-L., Haddad N., Moreau R., Thorel M.-F. 2000; Molecular characterization of environmental Mycobacterium strains by PCR-restriction fragment length polymorphism of hsp 65 and by sequencing of hsp 65, and of 16S and ITS1 rDNA. Res Microbiol 151:629–638 [CrossRef]
    [Google Scholar]
  18. Levi M. H., Bartell J., Gandolfo L., Smole S. C., Costa S. F., Weiss L. M., Johnson L. K., Osterhout G., Herbst L. H. 2003; Characterization of Mycobacterium montefiorense sp. nov., a novel pathogenic mycobacterium from moray eels that is related to Mycobacterium triplex . J Clin Microbiol 41:2147–2152 [CrossRef]
    [Google Scholar]
  19. Lévy-Frébault V. V., Portaels F. 1992; Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species. Int J Syst Bacteriol 42:315–323 [CrossRef]
    [Google Scholar]
  20. Lutz B. 1995; Section 3. Mycobacteriology. 3.12. Identification tests for mycobacteria. In Clinical Microbiology Procedures Handbook vol 1 Edited by Isenburg H. D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Marck C. 1988; ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836 [CrossRef]
    [Google Scholar]
  22. Pelicic V., Reyrat J.-M., Gicquel B. 1996; Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol 20:919–925 [CrossRef]
    [Google Scholar]
  23. Plikaytis B. B., Plikaytis B. D., Yakrus M. A., Butler W. R., Woodley C. L., Silcox V. A., Shinnick T. M. 1992; Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis , by gene amplification and restriction fragment length polymorphism analysis. J Clin Microbiol 30:1815–1822
    [Google Scholar]
  24. Portaels F., Fonteyne P.-A., de Beenhouwer H., de Rijk P., Guédénon A., Hayman J., Meyers M. W. 1996; Variability in 3′ end of 16S rRNA sequence of Mycobacterium ulcerans is related to geographic origin of isolates. J Clin Microbiol 34:962–965
    [Google Scholar]
  25. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  26. Rhodes M. W., Kator H., Kotob S. 7 other authors 2003; Mycobacterium shottsii sp. nov., a slowly growing species isolated from Chesapeake Bay striped bass ( Morone saxatilis . Int J Syst Evol Microbiol 53:421–424 [CrossRef]
    [Google Scholar]
  27. Rhodes M. W., Kator H., Kaattari I., Gauthier D., Vogelbein W., Ottinger C. 2004; Isolation and characterization of mycobacteria from striped bass Morone saxatilis from the Chesapeake Bay. Dis Aquat Organ 61:41–51 [CrossRef]
    [Google Scholar]
  28. Rogall T., Flohr T., Böttger E. C. 1990; Differentiation of Mycobacterium species by direct sequencing of amplified DNA. J Gen Microbiol 136:1915–1920 [CrossRef]
    [Google Scholar]
  29. Springer B., Stockman L., Teschner K., Roberts G. D., Bottger E. C. 1996; Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol 34:296–303
    [Google Scholar]
  30. Steingrube V. A., Gibson J. L., Brown B. A., Zhang Y., Wilson R. W., Rajagopalan M., Wallace R. J. Jr 1995; PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria. J Clin Microbiol 33:149–153 erratum 33, 1686
    [Google Scholar]
  31. Stinear T., Ross B. C., Davies J. K., Marino L., Robins-Browne R. M., Oppedisano F., Sievers A., Johnson P. D. 1999; Identification and characterization of IS 2404 and IS 2606 : two distinct repeated sequences for detection of Mycobacterium ulcerans by PCR. J Clin Microbiol 37:1018–1023
    [Google Scholar]
  32. Stinear T., Davies J. K., Jenkin G. A., Hayman J. A., Oppedisano F., Johnson P. D. R. 2000; Identification of Mycobacterium ulcerans in the environment from regions in Southeast Australia in which it is endemic with sequence capture-PCR. Appl Environ Microbiol 66:3206–3213 [CrossRef]
    [Google Scholar]
  33. Swofford D. L. 2002 paup* – Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  34. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C., Bodmer T. 1993; Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31:175–178
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  36. Tønjum T., Welty D. B., Jantzen E., Small P. L. 1998; Differentiation of Mycobacterium ulcerans , M. marinum , and M. haemophilum : mapping of their relationships to M. tuberculosis by fatty acid profile analysis, DNA-DNA hybridization, and 16S rRNA gene sequence analysis. J Clin Microbiol 36:918–925
    [Google Scholar]
  37. Tortoli E. 2003; Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev 16:319–354 [CrossRef]
    [Google Scholar]
  38. Trott K. A., Stacy B. A., Lifland B. D., Diggs H. E., Harland R. M., Khokha M. K., Grammer T. C., Parker J. M. 2004; Characterization of a Mycobacterium ulcerans -like infection in a colony of African tropical clawed frogs ( Xenopus tropicalis . Comp Med 54:309–317
    [Google Scholar]
  39. Turenne C. Y., Suchak A. A., Wolfe J. N., Kabani A., Nicolle L. E. 2003; Soft tissue infection caused by a novel pigmented, rapidly growing Mycobacterium species. J Clin Microbiol 41:2779–2782 [CrossRef]
    [Google Scholar]
  40. Ucko M., Colorni A., Kvitt H., Diamant A., Zlotkin A., Knibb W. R. 2002; Strain variation in Mycobacterium marinum fish isolates. Appl Environ Microbiol 68:5281–5287 [CrossRef]
    [Google Scholar]
  41. van Berkum P., Terefework Z., Paulin L., Suomalainen S., Lindström K., Eardly B. D. 2003; Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63343-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63343-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error