1887

Abstract

An obligately anaerobic, hyperthermophilic, organoheterotrophic archaeon, strain Z-1312, was isolated from a freshwater hot spring of the Uzon caldera (Kamchatka Peninsula, Russia). The cells were regular cocci, 1–4 μm in diameter, with one long flagellum. The cell envelope was composed of a globular layer attached to the cytoplasmic membrane. The temperature range for growth was 63–89 °C, with an optimum between 80 and 82 °C. The pH range for growth at 80 °C was 4·8–6·8, with an optimum at pH 6·0. Strain Z-1312 grew by hydrolysis and/or fermentation of a wide range of polymeric and monomeric substrates, including agarose, amygdalin, arabinose, arbutin, casein hydrolysate, cellulose (filter paper, microcrystalline cellulose, carboxymethyl cellulose), dextran, dulcitol, fructose, lactose, laminarin, lichenan, maltose, pectin, peptone, ribose, starch and sucrose. No growth was detected on glucose, xylose, mannitol or sorbitol. Growth products when sucrose or starch were used as the substrate were acetate, H and CO. Elemental sulfur, thiosulfate and nitrate added as potential electron acceptors for anaerobic respiration did not stimulate growth when tested with starch as the substrate. H at 100 % in the gas phase did not inhibit growth on starch or peptone. The G+C content of the DNA was 42·5 mol%. 16S rRNA gene sequence analysis placed the isolated strain Z-1312 as a member of the genus , where it represented a novel species, for which the name sp. nov. (type strain Z-1312=DSM 16532 =VKM V-2316) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63378-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs550995.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63378-0&mimeType=html&fmt=ahah

References

  1. Ando S., Ishida H., Kosugi Y., Ishikawa K. 2002; Hyperthermostable endoglucanase from Pyrococcus horikoshii . Appl Environ Microbiol 68:430–433 [CrossRef]
    [Google Scholar]
  2. Barbier G., Godfroy A., Meunier J.-R., Querellou J., Cambon M.-A., Lesongeur F., Grimont P. A. D., Raguenes G. 1999; Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. Int J Syst Bacteriol 49:1829–1837 [CrossRef]
    [Google Scholar]
  3. Bauer M. W., Driskill L. E., Callen W., Snead M. A., Mathur E. J., Kelly R. M. 1999; An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes β -1,4 bonds in mixed-linkage (1→3), (1→4)- β -d-glucans and cellulose. J Bacteriol 181:284–290
    [Google Scholar]
  4. Blöchl E., Burggraf S., Fiala G. 7 other authors 1995; Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:9–16 [CrossRef]
    [Google Scholar]
  5. Bonch-Osmolovskaya E. A., Miroshnichenko M. L. 1994; The influence of molecular hydrogen and elemental sulfur on the metabolism extremely thermophilic archaea of genus Thermococcus . Microbiology (English translation of Mikrobiologiia ) 63433–437
    [Google Scholar]
  6. Bonch-Osmolovskaya E. A., Stetter K. O. 1991; Interspecies hydrogen transfer in cocultures of thermophilic archaea. Syst Appl Microbiol 14:205–208 [CrossRef]
    [Google Scholar]
  7. Bonch-Osmolovskaya E. A., Slesarev A. I., Miroshnichenko M. L., Svetlichnaya T. P., Alekseev V. A. 1988; Characterization of Desulfurococcus amylolyticus n. sp. – a novel extremely thermophilic archaebacterium isolated from Kamchatka and Kurils hot springs. Microbiology (English translation of Mikrobiologiia ) 5794–101
    [Google Scholar]
  8. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp nov; – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [CrossRef]
    [Google Scholar]
  9. Burggraf S., Huber H., Stetter K. O. 1997; Reclassification of the crenarchaal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660 [CrossRef]
    [Google Scholar]
  10. Fiala G., Stetter K. O. 1986; Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61 [CrossRef]
    [Google Scholar]
  11. Hensel R., Matussek K., Michalke K., Tacke L., Tindall B. J., Kohlhoff M., Siebers B., Dielenschneider J. 1997; Sulfophobococcus zilligii gen. nov., spec. nov., a novel hyperthermophilic archaeum isolated from hot alkaline springs of Iceland. Syst Appl Microbiol 20:102–110 [CrossRef]
    [Google Scholar]
  12. Huber R., Dyba D., Huber H., Burggraf S., Rachel R. 1998; Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthemophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int J Syst Bacteriol 48:31–38 [CrossRef]
    [Google Scholar]
  13. Huber R., Huber H., Stetter K. O. 2000; Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and new metabolic properties. FEMS Microbiol Rev 24:615–623 [CrossRef]
    [Google Scholar]
  14. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–147 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  15. Limauro D., Cannio R., Fiorentino G., Rossi M., Bartolucci S. 2001; Identification and molecular characterization of an endoglucanase gene, celS , from the extremely thermophilic archaeon Sulfolobus solfataricus . Extremophiles 5:213–219 [CrossRef]
    [Google Scholar]
  16. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernyh N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing Archaebacterium . Syst Appl Microbiol 12:257–262 [CrossRef]
    [Google Scholar]
  17. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41:335–340 [CrossRef]
    [Google Scholar]
  18. Perevalova A. A., Lebedinsky A. A., Bonch-Osmolovskaya E. A., Chernyh N. A. 2003; Detection of hyperthermophilic archaea of the genus Desulfurococcus by hybridization with oligonucleotide probes. Microbiology (English translation of Mikrobiologiia ) 72383–389
    [Google Scholar]
  19. Pfennig N., Lippert K. D. 1965; Uber das Vitamin B12-Bedurfnis photographer Schweefelbakterien. Arch Mikrobiol 55:245–246 (in German
    [Google Scholar]
  20. Prokofeva M. I., Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Kuznetsov B. B., Tourova T. P., Bonch-Osmolovskaya E. A. 2000; Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. Int J Syst Evol Microbiol 50:2001–2008 [CrossRef]
    [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  22. Schäfer T., Schönheit P. 1992; Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus : evidence for the operation of a novel sugar fermentation pathway. Arch Microbiol 158:188–202 [CrossRef]
    [Google Scholar]
  23. Schönheit P., Schäfer T. 1995; Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11:26–57 [CrossRef]
    [Google Scholar]
  24. Slobodkin A. I., Bonch-Osmolovskaya E. A. 1994; Growth and formation of metabolic products by extremely thermophilic archaea of the genus Desulfurococcus in the presence and absence of elemental sulfur. Microbiology (English translation of Mikrobiologiia )63552–554
    [Google Scholar]
  25. Stetter K. O. 1986; Diversity of extremely thermophilic archaebacteria. In Thermophiles: General, Molecular and Applied Microbiology pp  39–74 Edited by Brock T. D. New York: Wiley;
    [Google Scholar]
  26. Stetter K. O. 1996; Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Tourova T. P., Kuznetsov B. B., Kalganova T. B., Bonch-Osmolovskaya E. A. 2000; Phylogenetic position of Desulfurococcus amylolyticus . Microbiology (English translation of Mikrobiologiia ) 69369–370 [CrossRef]
    [Google Scholar]
  29. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  30. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2888
    [Google Scholar]
  31. Zillig W., Stetter K. O., Prangishvilli D., Schaefer W., Wunderl S., Janekovic D., Holz I., Palm P. 1982; Desulfurococcaceae , the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig C3304–317
    [Google Scholar]
  32. Zillig W., Holz I., Klenk H.-P., Trent J., Wunderl S., Janekovic D., Imsel E., Haas B. 1987; Pyrococcus woesei , sp. nov., an ultra-thermophilic marine Archaebacterium , representing a novel order, Thermococcales . Syst Appl Microbiol 9:62–70 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63378-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63378-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error