1887

Abstract

Recent studies on the occurrence of (per)chlorate-reducing bacteria have resulted in the characterization of strains capable of dissimilatory (per)chlorate reduction. Phylogenetic analysis has shown that these bacteria are members of the . Strains have been isolated from polluted and pristine sites, but only strains from polluted sites have been characterized in detail and deposited in culture collections. Herein we describe the isolation and characterization of perchlorate-reducing bacterium strain MA-1 and chlorate-reducing bacterium strain ASK-1, respectively isolated from a pristine and a chlorate-polluted site. Both isolates are members of the . The 16S rRNA gene sequence similarity of MA-1 to DSM 13637 is 97·6 %, but the relatedness in DNA–DNA reassociation is only 37 %. Therefore, we propose to classify strain MA-1 (=DSM 15637=ATCC BAA-776) as the type strain of a novel species, sp. nov. Strain ASK-1 and a previously described strain GR-1 show 100 and 99 % 16S rRNA gene sequence similarity to DSM 13592 and DSM 13638, respectively. DNA–DNA hybridization studies indicated that strains ASK-1 and GR-1 are related at the species level to DSM 13592 (79 %) and DSM 13638 (85 %), respectively. As suggested previously, appears to be a later heterotypic synonym of . Although strain ASK-1 is identified as , its morphology and growth requirements are different from those of the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63404-0
2005-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs552063.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63404-0&mimeType=html&fmt=ahah

References

  1. Achenbach L. A., Michaelidou U., Bruce R. A., Fryman J., Coates J. D. 2001; Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51:527–533
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. Coates J. D., Achenbach L. A. 2004; Microbial perchlorate reduction: rocket-fueled metabolism. Nat Rev Microbiol 2:569–580 [CrossRef]
    [Google Scholar]
  5. Coates J. D., Michaelidou U., Bruce R. A., O'Connor S. M., Crespi J. N., Achenbach L. A. 1999; Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241
    [Google Scholar]
  6. Coyle C. L., Zumft W. G., Kroneck P. M., Korner H., Jakob W. 1985; Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina . Purification and properties of a novel multicopper enzyme. Eur J Biochem 153:459–467 [CrossRef]
    [Google Scholar]
  7. Cummings D. E., Caccavo F. Jr, Spring S., Rosenweig R. F. 1999; Ferribacterium limneticum , gen. nov., sp. nov. an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171:183–188 [CrossRef]
    [Google Scholar]
  8. De Ley L., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  10. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  11. Hurek T., Reinhold-Hurek B. 1995; Identification of grass-associated and toluene-degrading diazotrophs, Azoarcus spp., by analyses of partial 16S ribosomal DNA sequences. Appl Environ Microbiol 61:2257–2261
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  14. Kengen S. W. M., Rikken G. B., Hagen W. R., van Ginkel C. G., Stams A. J. M. 1999; Purification and characterization of (per)chlorate reductase from the chlorate-respiring strain GR-1. J Bacteriol 181:6706–6711
    [Google Scholar]
  15. Lovley D. R., Phillips E. J. P. 1987; Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540
    [Google Scholar]
  16. Ludwig W., Strunk O. 1996; arb, a software environment for sequence data. http://www.arb-home.de/
  17. Matsubara T., Frunzke K., Zumft W. G. 1982; Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus . J Bacteriol 149:816–823
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  19. Plugge C. M., Zoetendal E. G., Stams A. J. M. 2000; Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Evol Microbiol 50:1155–1162 [CrossRef]
    [Google Scholar]
  20. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  21. Reinhold-Hurek B., Hurek T. 2000; Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen.nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 50:649–659 [CrossRef]
    [Google Scholar]
  22. Renner R. 1998; Perchlorate-tainted wells spur government action. Environ Sci Technol 32:210A [CrossRef]
    [Google Scholar]
  23. Rikken G. B., Kroon A. G. M., van Ginkel C. G. 1996; Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl Microbiol Biotechnol 45:420–426 [CrossRef]
    [Google Scholar]
  24. Scholten J. C. M., Stams A. J. M. 1995; The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van Leeuwenhoek 68:309–315 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  26. Stams A. J. M., van Dijk J. B., Dijkema C., Plugge C. M. 1993; Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119
    [Google Scholar]
  27. Stepanyuk V. V., Smirnova G. F., Klyushnikova T. M., Kanyuk N. I., Panchenko L. P., Nogina T. M., Prima V. I. 1992; New species of the Acinetobacter genus, Acinetobacter thermotoleranticus sp. nov. Mikrobiologiia 61:490–500 (in Russian
    [Google Scholar]
  28. Tan Z., Reinhold-Hurek B. 2003; Dechlorosoma suillum Achenbach et al . 2001 is a later subjective synonym of Azospira oryzae Reinhold-Hurek and Hurek 2000. Int J Syst Evol Microbiol 53:1139–1142 [CrossRef]
    [Google Scholar]
  29. Thalen M., van de IJsel J., Jiskoot W., Zomer B., Roholl P. J. M., de Gooijer C., Beuvery C., Tramper J. 1999; Rational medium design for Bordetella pertussis : basic metabolism. J Biotechnol 75:147–159 [CrossRef]
    [Google Scholar]
  30. Urbansky E. T. 1998; Perchlorate chemistry: implications for analysis and remediation. Bioremediat J 2:81–95 [CrossRef]
    [Google Scholar]
  31. Urbansky E. T. 2002; Perchlorate as an environmental contaminant. Environ Sci Pollut Res Int 9:187–192 [CrossRef]
    [Google Scholar]
  32. US Environmental Protection Agency 2000 The effect of ammonium perchlorate on thyroids . Pathology Working Group Report Washington, DC: National Center for Environmental Assessment, US EPA; http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=15262
    [Google Scholar]
  33. van Ginkel C. G., Plugge C. M., Stroo C. A. 1995; Reduction of chlorate with various energy substrates and inocula under anaerobic conditions. Chemosphere 31:4057–4066 [CrossRef]
    [Google Scholar]
  34. van Ginkel C. G., Rikken G. B., Kroon A. G. M., Kengen S. W. M. 1996; Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch Microbiol 166:321–326 [CrossRef]
    [Google Scholar]
  35. Wolterink A. F. W. M., Jonker A. B., Kengen S. W. M., Stams A. J. M. 2002; Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium. Int J Syst Evol Microbiol 52:2183–2190 [CrossRef]
    [Google Scholar]
  36. Wu J., Unz R. F., Zhang H., Logan B. E. 2001; Persistence of perchlorate and the relative numbers of perchlorate- and chlorate-respiring microorganisms in natural waters, soils, and wastewater. Bioremediat J 5:119–130 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63404-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63404-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error