1887

Abstract

Fe(III)-reducing isolates were recovered from two aquifers in which Fe(III) reduction is known to be important. Strain Bem was enriched from subsurface sediments collected in Bemidji, MN, USA, near a site where Fe(III) reduction is important in aromatic hydrocarbon degradation. Strains P11, P35 and P39 were isolated from the groundwater of an aquifer in Plymouth, MA, USA, in which Fe(III) reduction is important because of long-term inputs of acetate as a highway de-icing agent to the subsurface. All four isolates were Gram-negative, slightly curved rods that grew best in freshwater media. Strains P11, P35 and P39 exhibited motility via means of monotrichous flagella. Analysis of the 16S rRNA and genes indicated that all four strains are -proteobacteria and members of the cluster of the . Differences in phenotypic and phylogenetic characteristics indicated that the four isolates represent two novel species within the genus . All of the isolates coupled the oxidation of acetate to the reduction of Fe(III) [iron(III) citrate, amorphous iron(III) oxide, iron(III) pyrophosphate and iron(III) nitrilotriacetate]. All four strains utilized ethanol, lactate, malate, pyruvate and succinate as electron donors and malate and fumarate as electron acceptors. Strain Bem grew fastest at 30 °C, whereas strains P11, P35 and P39 grew equally well at 17, 22 and 30 °C. In addition, strains P11, P35 and P39 were capable of growth at 4 °C. The names sp. nov. (type strain Bem=ATCC BAA-1014=DSM 16622=JCM 12645) and sp. nov. (strains P11, P35 and P39; type strain P35=ATCC BAA-1013=DSM 16674=JCM 12644) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63417-0
2005-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551667.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63417-0&mimeType=html&fmt=ahah

References

  1. Achenbach L., Woese C. 1995; 16S and 23S rRNA-like primers. In Archaea: a Laboratory Manual pp  201–203 Edited by Robb F. T., Place A. R., Sowers K. R. and others Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  4. Anderson R. T., Lovley D. R. 1999; Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Bioremediation J 3:121–135 [CrossRef]
    [Google Scholar]
  5. Anderson R. T., Lovley D. R. 2000; Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environ Sci Technol 34:2261–2266 [CrossRef]
    [Google Scholar]
  6. Anderson R. T., Vrionis H. A., Ortiz-Bernad I. 10 other authors 2003; Stimulated in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891 [CrossRef]
    [Google Scholar]
  7. Bazylinski D. A., Dean A. J., Schuler D., Phillips E. J. P., Lovley D. R. 2000; N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273 [CrossRef]
    [Google Scholar]
  8. Bond D. R., Lovley D. R. 2003; Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555 [CrossRef]
    [Google Scholar]
  9. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R. 2002; Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485 [CrossRef]
    [Google Scholar]
  10. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols D. S., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov. novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5 ω 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047 [CrossRef]
    [Google Scholar]
  11. Bozal N., Montes M. J., Tudela E., Jimenez F., Guinea J. 2002; Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205
    [Google Scholar]
  12. Caccavo F. Jr, Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J. 1994; Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759
    [Google Scholar]
  13. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  14. Childers S. E., Ciufo S., Lovley D. R. 2002; Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769 [CrossRef]
    [Google Scholar]
  15. Church P., Armstrong D., Granato G., Stone V., Smith K., Provencher P. 1996; Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, Southeastern Massachusetts – Description of study area, data collection programs, and methodology . US Geological Survey, Open-file report 96-317
  16. Coates J. D., Phillips E. J., Lonergan D. J., Jenter H., Lovley D. R. 1996; Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536
    [Google Scholar]
  17. Coates J. D., Bhupathiraju V. K., Achenbach L. A., McInerney M. J., Lovley D. R. 2001; Geobacter hydrogenophilus , Geobacter chapellei and Geobacter grbiciae , three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:581–588
    [Google Scholar]
  18. Coppi M. V., Leang C., Sandler S. J., Lovley D. R. 2001; Development of a genetic system for Geobacter sulfurreducens . Appl Environ Microbiol 67:3180–3187 [CrossRef]
    [Google Scholar]
  19. Cummings D. E., Snoeyenbos-West O. L., Newby D. T., Niggemyer A. M., Lovley D. R., Achenbach L. A., Rosenzweig R. F. 2003; Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb Ecol 46:257–269
    [Google Scholar]
  20. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  21. Eden P. A., Schmidt T. M., Blakemore R. P., Pace N. R. 1991; Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 41:324–325 [CrossRef]
    [Google Scholar]
  22. Finneran K., Johnsen C. V., Lovley D. R. 2003; Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673 [CrossRef]
    [Google Scholar]
  23. Helms A. C., Martiny A. C., Hofman-Bang J., Ahring B. K., Kilstrup M. 2004; Identification of bacterial cultures from archaeological wood using molecular biological techniques. Int Biodeterior Biodegrad 53:79–88 [CrossRef]
    [Google Scholar]
  24. Holmes D. E., Bond D. R., O'Neil R. A., Reimers C. E., Tender L. R., Lovley D. R. 2004a; Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190 [CrossRef]
    [Google Scholar]
  25. Holmes D. E., Nevin K. P., Lovley D. R. 2004b; Comparison of 16S rRNA, nifD , recA , gyrB , rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599 [CrossRef]
    [Google Scholar]
  26. Holmes D. E., Nicoll J. S., Bond D. R., Lovley D. R. 2004c; Potential role of a novel psychrotolerant member of the Geobacteraceae , Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by the marine sediment fuel cell. Appl Environ Microbiol 706023–6030 [CrossRef]
    [Google Scholar]
  27. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  28. Ikenaga M., Asakawa S., Muraoka Y., Kimura M. 2003; Bacterial communities associated with nodal roots of rice plants along with the growth stages: estimation by PCR-DGGE and sequence analyses. Soil Sci Plant Nutr 49:591–602 [CrossRef]
    [Google Scholar]
  29. Istok J. D., Senko J. M., Krumholz L. R., Watson D., Bogle M. A., Peacock A., Chang Y.-J., White D. C. 2004; In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38:468–475 [CrossRef]
    [Google Scholar]
  30. Kashefi K., Lovley D. 2003; Extending the upper temperature limit for life. Science 301:934 [CrossRef]
    [Google Scholar]
  31. Kashefi K., Holmes D. E., Lovley D. R., Tor J. 2004; Potential importance of dissimilatory Fe(III)-reducing microorganisms in hot sedimentary environments. In The Subseafloor Biosphere at Mid-Ocean Ridges Geophysical Monograph Series no. 144 pp  199–211 Washington, DC: American Geophysical Union Press;
    [Google Scholar]
  32. Knoblauch C., Sahm K., Jorgensen B. B. 1999; Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen.nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49:1631–1643 [CrossRef]
    [Google Scholar]
  33. Leonardo M. R., Moser D. P., Barbieri E., Brantner C. A., MacGregor B. J., Paster B. J., Stackebrandt E., Nealson K. H. 1999; Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei . Int J Syst Bacteriol 49:1341–1351 [CrossRef]
    [Google Scholar]
  34. Lovley D. R. 1991; Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287
    [Google Scholar]
  35. Lovley D. 2000; Fe(III) and Mn(IV)-reducing prokaryotes. In The Prokaryotes , 3rd edn. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  36. Lovley D. 2005; Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes , 4th edn. Edited by Dworkin M., Falkow S., Rosenberg E., Fletcher M. New York: Springer; (in press
    [Google Scholar]
  37. Lovley D. R., Chapelle F. H. 1995; Deep subsurface microbial processes. Rev Geophys 33:365–381
    [Google Scholar]
  38. Lovley D. R., Phillips E. J. P. 1986; Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl Environ Microbiol 52:751–757
    [Google Scholar]
  39. Lovley D. R., Phillips E. J. P. 1987; Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540
    [Google Scholar]
  40. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
    [Google Scholar]
  41. Lovley D. R., Stolz J. F., Nord G. L., Phillips E. J. P. 1987; Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254 [CrossRef]
    [Google Scholar]
  42. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J. P., Gorby Y. A., Goodwin S. 1993; Geobacter metallireducens gen. nov. sp. nov. a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344 [CrossRef]
    [Google Scholar]
  43. Lovley D. R., Holmes D. E., Nevin K. P. 2004; Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286
    [Google Scholar]
  44. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  45. Methé B. A., Nelson K. E., Eisen J. A. 31 other authors 2003; Genome of Geobacter sulfurreducens : metal reduction in subsurface environments. Science 302:1967–1969 [CrossRef]
    [Google Scholar]
  46. Nevin K. P., Lovley D. R. 2000a; Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens . Appl Environ Microbiol 66:2248–2251 [CrossRef]
    [Google Scholar]
  47. Nevin K. P., Lovley D. R. 2000b; Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ Sci Technol 34:2472–2478 [CrossRef]
    [Google Scholar]
  48. Nevin K., Lovley D. 2002a; Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159 [CrossRef]
    [Google Scholar]
  49. Nevin K. P., Lovley D. R. 2002b; Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans . Appl Environ Microbiol 68:2294–2299 [CrossRef]
    [Google Scholar]
  50. Ostendorf D. 1997–2004; Highway deicing agent impacts on soil and groundwater quality . Series of Monthly Progress Reports. Prepared under ISA and ISA 9775 for the Massachusetts Highway Department
  51. Pearson W. R. 1990; Rapid and sensitive sequence comparison with fastp and fasta. Methods Enzymol 183:63–98
    [Google Scholar]
  52. Petrie L., North N. N., Dollhopf S. F., Balkwill D. L., Kostka J. E. 2003; Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI. Appl Environ Microbiol 69:7467–7479 [CrossRef]
    [Google Scholar]
  53. Roling W. F. M., van Breukelen B. M., Braster M., Lin B., van Verseveld H. W. 2001; Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67:4619–4629 [CrossRef]
    [Google Scholar]
  54. Rooney-Varga J. N., Anderson R. T., Fraga J. L., Ringelberg D., Lovley D. R. 1999; Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063
    [Google Scholar]
  55. Snoeyenbos-West O. L., Nevin K. P., Anderson R. T., Lovley D. R. 2000; Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39:153–167 [CrossRef]
    [Google Scholar]
  56. Stein L. Y., La Duc M. T., Grundl T. J., Nealson K. H. 2001; Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3:10–18 [CrossRef]
    [Google Scholar]
  57. Straub K. L., Buchholz-Cleven B. E. E. 2001; Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria. Int J Syst Evol Microbiol 51:1805–1808 [CrossRef]
    [Google Scholar]
  58. Straub K. L., Hanzlik M., Buchholz-Cleven B. E. E. 1998; The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst Appl Microbiol 21:442–449 [CrossRef]
    [Google Scholar]
  59. Swofford D. 1998 paup – Phylogenetic Analysis Using Parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  60. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  61. Ueda T., Suga Y., Yahiro N., Matsuguchi T. 1995; Genetic diversity of N2-fixing bacteria associated with rice roots by molecular evolutionary analysis of a nifD library. Can J Microbiol 41:235–240 [CrossRef]
    [Google Scholar]
  62. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R. 1998; Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67 [CrossRef]
    [Google Scholar]
  63. Vrionis H. A., Anderson R. T., Ortiz-Bernad I., O'Neill K. R., Resch C. T., Long P. E., Lovley D. R. 2005; Shifts in geochemistry and microbial community distributions in response to biostimulation in a uranium-contaminated aquifer. Appl Environ Microbiol (in press
    [Google Scholar]
  64. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63417-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63417-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error