1887

Abstract

A yellow-pigmented, Gram-negative and aerobic bacterial strain, designated AT1026, was isolated from a terrestrial sample from the Antarctic. Results of 16S rRNA gene sequence analysis indicated that the Antarctic isolate belonged to the genus , with the highest sequence similarity to (96·4 %). Cells were non-motile, non-gliding and psychrotolerant, with optimum and maximum temperatures of about 20 and 25 °C. Flexirubins were absent. The major isoprenoid quinone (MK-6), predominant cellular fatty acids (iso-C G, iso-C and a mixture of C 7 and/or iso-C 2-OH) and DNA G+C content (38 mol%) of the Antarctic isolate were consistent with those of the genus . In contrast, several phenotypic characters can be used to differentiate this isolate from other flavobacteria. The polyphasic data presented in this study indicated that this isolate should be classified as a novel species in the genus . The name sp. nov. is therefore proposed for the Antarctic isolate; the type strain is AT1026 (=IMSNU 14042=KCTC 12222=JCM 12383).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63423-0
2005-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550637.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63423-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Evol Microbiol 46:128–148
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  3. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466
    [Google Scholar]
  4. Christensen W. B. 1949; Hydrogen sulfide production and citrate utilization in the differentiation of enteric pathogens and coliform bacteria . Research Bulletin no: 1 Greeley, CO: Weld County Health Department;
    [Google Scholar]
  5. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [CrossRef]
    [Google Scholar]
  6. Chun J., Bae K. S., Moon E. Y., Jung S. O., Lee H. K., Kim S. J. 2000; Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913
    [Google Scholar]
  7. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip – phylogenetic inference package, version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  10. Fitch W. M. 1972; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416
    [Google Scholar]
  11. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284 [CrossRef]
    [Google Scholar]
  12. Isaksen M. F., Jørgensen B. B. 1996; Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl Environ Microbiol 62:408–414
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  15. McCammon S. A., Bowman J. P. 2000; Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp.nov. and Flavobacterium xanthum sp. nov., nom.rev. and reclassification of [ Flavobacterium ] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50:1055–1063 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athayle M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  18. R Foundation for Statistical Computing 2003 R version 1.8.1 Vienna: Vienna University of Technology;
    [Google Scholar]
  19. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226
    [Google Scholar]
  20. Reichenbach H. 1991; The order C ytophagales . In The Prokaryotes pp  3631–3675 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  24. Swofford D. L. 1998 paup – phylogenetic analysis using parsimony, version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  25. Thornley M. J. 1960; The differentiation of Pseudomonas from other gram-negative bacteria on the basis of arginine metabolism. J Appl Bacteriol 23:37–52 [CrossRef]
    [Google Scholar]
  26. Weeks O. B. 1981; Preliminary studies of the pigments of Flavobacterium breve NCTC 11099 and Flavobacterium odoratum NCTC 11036. In The Flavobacterium-Cytophaga Group pp  108–114 Edited by Weeks O. B. Weinheim: Gesellschaft für Biotechnologische Forschung;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63423-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63423-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error