1887

Abstract

A bacterial strain was isolated from the water of Lake Martel in Mallorca (Spain). The isolate, designated MACL11, was halotolerant and strictly aerobic. The cells were non-motile, non-spore-forming, Gram-negative short rods. Comparative 16S rRNA gene sequence analysis revealed that MACL11 represents a separate line of descent within the order ‘’ of the class ‘’. Strain MACL11 was most closely related to the genera (93·3 % sequence similarity to ), (90·3 % sequence similarity to ) and (90·3 % sequence similarity to ). Chemotaxonomically, strain MACL11 was characterized by the presence of Q-10 as the major respiratory lipoquinone. The major fatty acids detected were C cyclo8, C 7, C and 11-methyl C 7. The G+C content of the DNA was 57·4 mol%. Oxidase and catalase activities were present. Growth with many different carbohydrates as the sole carbon source was observed. The data from this polyphasic study suggest that this bacterium belongs to a novel genus of the order ‘’ and is not associated with any of the known families of this order. It is proposed that isolate MACL11 should be classified in a novel genus and species, gen. nov., sp. nov., with MACL11 (=LMG 22193=CECT 5861) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63438-0
2005-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550955.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63438-0&mimeType=html&fmt=ahah

References

  1. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  2. Cho J.-C., Giovannoni S. J. 2003; Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order ‘ Rhizobiales ’. Int J Syst Evol Microbiol 53:1853–1859 [CrossRef]
    [Google Scholar]
  3. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  5. Denner E. B. M., Smith G. W., Busse H.-J., Schumann P., Narzt T., Polson S. W., Lubitz W., Richardson L. L. 2003; Aurantimonas coralicida gen nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 53:1115–1122 [CrossRef]
    [Google Scholar]
  6. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Dunfield K. E., Xavier L. J. C., Germida J. J. 1999; Identification of Rhizobium leguminosarum and Rhizobium sp. ( Cicer ) strains using a custom fatty acid methyl ester (FAME) profile library. J Appl Microbiol 86:78–86 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1983; Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333 [CrossRef]
    [Google Scholar]
  9. Jarvis B. D. W., Sivakumaran S., Tighe S. W., Gillis M. 1996; Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant Soil 184:143–158 [CrossRef]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kämpfer P., Müller C., Mau M., Neef A., Auling G., Busse H.-J., Osborn A. M., Stolz A. 1999; Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp.nov. and Pseudaminobacter defluvii sp. nov. Int J Syst Bacteriol 49:887–897 [CrossRef]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  14. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  15. Moreno E., Stackebrandt E., Dorsch M., Wolters J., Busch M., Mayer H. 1990; Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria . J Bacteriol 172:3569–3576
    [Google Scholar]
  16. Peix A., Rivas R., Mateos P. F., Martínez-Molina E., Rodríguez-Barrueco C., Velázquez E. 2003; Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro . Int J Syst Evol Microbiol 53:2067–2072 [CrossRef]
    [Google Scholar]
  17. Rivas R., Velázquez E., Valverde A., Mateos P. F., Martínez-Molina E. 2001; A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22:1086–1089 [CrossRef]
    [Google Scholar]
  18. Rivas R., Sánchez M., Trujillo M. E., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Velázquez E. 2003; Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree ( Ulmus nigra ). Int J Syst Evol Microbiol 53:99–103 [CrossRef]
    [Google Scholar]
  19. Rzhetsky A., Nei M. 1993; Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 2000; Roseibium denhamense gen. nov., sp. nov. and Roseibium hamelinense sp. nov. aerobic bacteriochlorophyll-containing bacteria isolated from the east and west coasts of Australia. Int J Syst Evol Microbiol 50:2151–2156 [CrossRef]
    [Google Scholar]
  22. Tajima F., Nei M. 1984; Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285
    [Google Scholar]
  23. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. J Mol Evol 10:512–526
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  25. Tighe S. W., de Lajudie P., Dipietro K, Lindström K., Nick G, Jarvis B. D. W. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium , Bradyrhizobium , Mesorhizobium , Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [CrossRef]
    [Google Scholar]
  26. Wilkinson S. G. 1988; Gram-negative bacteria. In Microbial Lipids vol 1 pp  299–487 New York: Academic Press;
    [Google Scholar]
  27. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171
    [Google Scholar]
  28. Young J. M., Kuykendall L. D., Martínez-Romero E., Kerr A., Sawada H. 2001; A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al . 1998 as new combinations: Rhizobium radiobacter , R. rhizogenes, R. rubi , R. undicola and R. vitis .. Int J Syst Evol Microbiol 5189–103
    [Google Scholar]
  29. Zimmermann O., Spröer C., Kroppenstedt R. M., Fuchs E., Köchel H. G., Funke G. 1998; Corynebacterium thomssenii sp. nov., a Corynebacterium with N -acetyl- β -glucosaminidase activity from human clinical specimens. Int J Syst Bacteriol 48:489–494 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63438-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63438-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error