1887

Abstract

During a study in the Argentinian region of Chaco (Córdoba), some strains were isolated from the rhizosphere of grasses growing in semi-desertic arid soils. Two of these strains, one isolated from the rhizospheric soil of (strain CH01) and the other from (strain PA01), were Gram-negative, strictly aerobic rods, which formed yellow round colonies on nutrient agar. They produced a water-insoluble yellow pigment, and a fluorescent pigment was also detected. A polyphasic taxonomic approach was used to characterize the strains. Comparison of the 16S rRNA gene sequences showed a similarity of 99·3 % between them, and phylogenetic analysis revealed that the strains belong to the genus , within the -subclass of the . The closest related species is IAM 1598 (similarity of 99·0 % to strain CH01 and 98·8 % to strain PA01), clustering in a separate branch with the various methods of tree building used. Strains CH01 and PA01 both had a single polar flagellum, like other yellow pigment-producing pseudomonads related to them. Both strains produced catalase and oxidase. Similar to , they did not hydrolyse gelatin or casein. The G+C DNA contents determined were 57·5 mol% for CH01 and 58·0 mol% for PA01. DNA–DNA hybridization results showed 81 % relatedness between them, and only 40–44 % relatedness with respect to the type strain of . These results, together with other phenotypic characteristics, support the conclusion that both isolates belong to the same species, and should be described as representing a novel species within the genus , for which the name sp. nov. is proposed. The type strain is CH01 (=LMG 22563=CECT 7010).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63445-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551107.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63445-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Anzai Y., Kudo Y., Oyaizu H. 1997; The phylogeny of the genera Chryseomonas , Flavimonas , and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251 [CrossRef]
    [Google Scholar]
  3. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  4. Behrendt U., Ulrich A., Schumann P., Erler W., Burghardt J., Seyfarth W. 1999; A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 49:297–308 [CrossRef]
    [Google Scholar]
  5. Bucher E. 1982; Chaco and Caatinga – South American arid savannas. Woodlands and thickets. In Ecology of Tropical Savannas pp  48–79 Edited by Huntley B. J., Walker B. H. Berlin: Springer-Verlag;
    [Google Scholar]
  6. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [CrossRef]
    [Google Scholar]
  7. Döbereiner J. 1995; Isolation and identification of aerobic nitrogen fixing bacteria from soil and plants. In Methods in Applied Soil Microbiology and Biochemistry pp  134–141 Edited by Alef K., Nannipieri P. London: Academic Press;
    [Google Scholar]
  8. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington: American Society for Microbiology;
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1983; Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333 [CrossRef]
    [Google Scholar]
  11. Frey P., Frey-Klett P., Garbaye J., Berge O., Heulin T. 1997; Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the douglas fir-Laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860
    [Google Scholar]
  12. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L. 1994; Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 44:410–415 [CrossRef]
    [Google Scholar]
  13. Iizuka H., Komagata K. 1963; On the studies of microorganisms of cereal grains: III: Pseudomonas isolated from rice, with special reference to the taxonomic studies of chromogenic group of genus Pseudomonas . Nippon Nogeikagaku Kaishi 37:71–76 [CrossRef]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. London: Academic Press;
    [Google Scholar]
  15. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  16. Kodama K., Kimura N., Komagata K. 1985; Two new species of Pseudomonas : P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. Int J Syst Bacteriol 35:467–474 [CrossRef]
    [Google Scholar]
  17. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001 Molecular Evolutionary Genetics Analysis software Arizona State University; Tempe, AZ, USA:
    [Google Scholar]
  18. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  19. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of the cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40 [CrossRef]
    [Google Scholar]
  20. Palleroni N. J. 1992; Present situation of the taxonomy of aerobic psudomonads. In Pseudomonas: Molecular Biology and Biotechnology pp  105–115 Edited by Galli E., Silver S., Witholt B. Washington: American Society for Microbiology;
    [Google Scholar]
  21. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas . Int J Syst Bacteriol 23:333–339 [CrossRef]
    [Google Scholar]
  22. Peix A., Rivas R., Mateos P. F., Martínez-Molina E., Rodríguez-Barrueco C., Velázquez E. 2003; Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro . Int J Syst Evol Microbiol 53:2067–2072 [CrossRef]
    [Google Scholar]
  23. Peix A., Rivas R., Santa-Regina I., Mateos P. F., Martínez-Molina E., Rodríguez-Barrueco C., Velázquez E. 2004; Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Microbiol 54:847–850 [CrossRef]
    [Google Scholar]
  24. Rivas R., Willems A., Subba-Rao N. S., Mateos P. F., Kroppenstedt R., Martínez-Molina E., Gillis M., Velázquez E. 2003; Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans , an aquatic legume from India. Syst Appl Microbiol 26:47–54 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Tajima F., Nei M. 1984; Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285
    [Google Scholar]
  27. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882
    [Google Scholar]
  29. Uchino M., Kosako Y., Uchimura T., Komagata K. 2000; Emendation of Pseudomonas straminea Iizuka and Komagata 1963. Int J Syst Evol Microbiol 50:1513–1519 [CrossRef]
    [Google Scholar]
  30. Uchino M., Shida O., Uchimura T., Komagata K. 2001; Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp.nov. and Pseudomonas cremoricolorata sp. nov. J Gen Appl Microbiol 46:247–261
    [Google Scholar]
  31. Versalovic J., Koeuth T., Lupsky J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831 [CrossRef]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  33. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M. 2001; DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51:1315–1322
    [Google Scholar]
  34. Yang Z. 1997; PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 15:555–556
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63445-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63445-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error