1887

Abstract

A Gram-negative, rod-shaped, non-spore-forming bacterium (designated strain Kw05) was isolated from granules used in the wastewater treatment plant of a beer-brewing factory in Kwang-Ju, Republic of Korea. On the basis of 16S rRNA gene sequence similarity, strain Kw05 was shown to belong to the family , and was most closely related to (96·6 %), (96·3 %), (96·1 %) and (96·1 %). The G+C content of the genomic DNA of strain Kw05 was 36·2 mol%, within the range of 32–37 mol% for the genus . Chemotaxonomic data (major menaquinone MK-6; major fatty acids iso-C, iso-C 3-OH, iso-C 3-OH and iso-C 9) supported the classification of strain Kw05 within the genus . Kw05 therefore represents a novel species, for which the name sp. nov. is proposed. The type strain is Kw05 (=KCTC 12201=IAM 15099).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63459-0
2005-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550747.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63459-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Bae J.-W., Lee S.-T. 1999; Layered structure of UASB granules gives microbial population resistance to toxic chemicals. Biotechnol Lett 21:159–162 [CrossRef]
    [Google Scholar]
  3. Bae J.-W., Rhee S.-K., Hyun S.-H., Kim I. S., Lee S.-T. 2000; Layered structure of granules in upflow anaerobic sludge blanket reactor gives microbial populations resistance to metal ions. Biotechnol Lett 22:1935–1940 [CrossRef]
    [Google Scholar]
  4. Bergey D. H., Harrison F. C., Breed R. S., Hammer B. W., Huntoon F. M. (editors) 1923 Bergey's Manual of Determinative Bacteriology Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  6. Bernardet J.-F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  7. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  8. Cappuccino J. G., Sherman N. 2002 Microbiology: a Laboratory Manual , 6th edn. Menlo Park, CA: Benjamin Cummings;
    [Google Scholar]
  9. de Zeeuw W. J., Lettinga G. 1980; Use of anaerobic digestion for wastewater treatment. Antonie van Leeuwenhoek 46:110–112 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Fukuzaki S., Chang Y. J., Nishio N., Nagai S. 1991; Characteristics of granular methanogenic sludges grown on lactate in a UASB reactor. J Ferment Bioeng 72:465–472 [CrossRef]
    [Google Scholar]
  12. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Humphry D. R., George A., Black G. W., Cummings S. P. 2001; Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243
    [Google Scholar]
  14. Im W.-T., Bae H.-S., Yokota A., Lee S.-T. 2004; Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 54:851–855 [CrossRef]
    [Google Scholar]
  15. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  16. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  17. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  18. MacLeod F. A., Guiot S. R., Costerton J. W. 1990; Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56:1598–1607
    [Google Scholar]
  19. McCammon S. A., Bowman J. P. 2000; Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [ Flavobacterium ] salegens as Salegentibacter salegens gen. nov., comb. nov.. Int J Syst Evol Microbiol 501055–1063 [CrossRef]
    [Google Scholar]
  20. McCammon S. A., Innes B. H., Bowman J. P., Franzmann P. D., Dobson S. J., Holloway P. E., Skerratt J. H., Nichols P. D., Rankin L. M. 1998; Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 48:1405–1412 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Nakagawa Y., Sakane T., Yokota A. 1996; Emendation of the genus Planococcus and transfer of Flavobacterium okeanokoites Zobell and Upham 1944 to the genus Planococcus as Planococcus okeanokoites comb. nov. Int J Syst Bacteriol 46:866–870 [CrossRef]
    [Google Scholar]
  23. Reichenbach H. 1989; Order I. Cytophagales Leadbetter 1974, 99AL . In Bergey's Manual of Systematic Bacteriology vol 3 pp  2011–2013 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Schmidt J. E., Ahring B. K. 1996; Acetate and hydrogen metabolism in intact and disintegrated granules from an acetate-fed, 55 °C, UASC reactor. Biotechnol Bioeng 49:229–246
    [Google Scholar]
  27. Shen C. F., Kosaric N., Blaszczyk R. 1993; The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (EPS. Water Res 27:25–33 [CrossRef]
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  29. Takeuchi M., Hatano K. 1998; Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. Int J Syst Bacteriol 48:973–982 [CrossRef]
    [Google Scholar]
  30. Tamaki T., Hanada S., Kamagata Y., Nakamura K., Nomura N., Nakano K., Matsumura M. 2003; Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 53:519–526 [CrossRef]
    [Google Scholar]
  31. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Van Trappen S., Vandecandelaere I., Mergaert J., Swings J. 2004; Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov. novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:85–92 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Zhu F., Wang S., Zhou P. 2003; Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 53:853–857 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63459-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63459-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error