1887

Abstract

Strain Con a/3 is a Gram-positive, motile, endospore-forming, rod-shaped and arsenic-resistant bacterium, which was isolated from a concretion of arsenic ore obtained from a bore-hole. The bacterium grew in the presence of 20 mM arsenate and 0·5 mM arsenite. Diaminopimelic acid was present in the cell wall peptidoglycan, MK-7 was the major menaquinone, and iso-C, anteiso-C, iso-C and C(7) were the major fatty acids. Based on its phenotypic, chemotaxonomic and phylogenetic characteristics, strain Con a/3 was identified as a member of the genus . It exhibited maximum similarity (97 %) at the 16S rRNA gene level with (DSM 14730); however, the DNA–DNA relatedness value with was 60 %. Strain Con a/3 also exhibited a number of phenotypic differences from (DSM 14730). Strain Con a/3 was therefore identified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Con a/3 (=MTCC 4380=DSM 15822=JCM 12167).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63476-0
2005-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551123.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63476-0&mimeType=html&fmt=ahah

References

  1. Cervantes C., Ji G., Ramirez J. L., Silver S. 1994; Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367
    [Google Scholar]
  2. Claus D., Berkeley R. C. W. 1986; The genus Bacillus . In Bergey's Manual of Systematic Bacteriology vol 2 pp  1104–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in Actinomycetes and Corynebacteria . J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  4. de Vicente A., Aviles M., Codina J. C., Borrego J. J., Romero P. 1990; Resistance to antibiotics and heavy metals of Pseudomonas aeruginosa isolated from natural waters. J Appl Bacteriol 68:625–632 [CrossRef]
    [Google Scholar]
  5. Dopson M., Lindstrom E. B., Hallberg K. B. 2001; Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus . Extremophiles 5:247–255 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  7. Kämpfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98 [CrossRef]
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  9. Komagata K., Suzuki K. I. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206
    [Google Scholar]
  10. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  11. Laverman A. M., Switzer Blum J., Schaefer J. K., Philips E. J. P., Lovley D. R., Oremland R. S. 1995; Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561
    [Google Scholar]
  12. Niggemyer A., Spring S., Stackebrandt E., Rosenzweig R. F. 2001; Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium . Appl Environ Microbiol 67:5568–5580 [CrossRef]
    [Google Scholar]
  13. Oremland R. S., Newman D. K., Kail B. W., Stolz J. F. 2001; Bacterial respiration of arsenate and its significance in the environment. In Environmental Chemistry of Arsenic pp  273–296 Edited by Frankenberger W. T. Jr New York: Marcel Dekker;
    [Google Scholar]
  14. Prithiviraj Singh S., Mishra S. K., Mahadevan A. 2001; Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3. Biochem Biophys Res Commun 280:1393–1401 [CrossRef]
    [Google Scholar]
  15. Reddy G. S. N., Prakash J. S. S., Matsumoto G. I., Stackebrandt E., Shivaji S. 2002; Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52:1017–1021 [CrossRef]
    [Google Scholar]
  16. Reddy G. S. N., Matsumoto G. I., Shivaji S. 2003; Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 53:1363–1367 [CrossRef]
    [Google Scholar]
  17. Sato T., Kobayashi Y. 1998; The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol 180:1655–1661
    [Google Scholar]
  18. Sato N. S., Murata N. 1988; Membrane lipids. Methods Enzymol 167:251–259
    [Google Scholar]
  19. Shivaji S., Rao N. S., Saisree L., Reddy G. S. N., Seshu Kumar G., Bhargava P. M. 1989; Isolates of Arthrobacter from the soils of Schirmacher Oasis, Antarctica. Polar Biol 10:225–229
    [Google Scholar]
  20. Shivaji S., Ray M. K., Rao N.S., Saisree L., Jagannadham M. V., Kumar G. S., Reddy G. S. N., Bhargava P. M. 1992; Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42:102–106 [CrossRef]
    [Google Scholar]
  21. Shivaji S., Vijaya Bhanu N., Aggarwal R. K. 2000; Identification of Yersinia pestis as the causative organism of plague in India as determined by 16S rDNA sequencing and RAPD-based genomic fingerprinting. FEMS Microbiol Lett 189:247–252 [CrossRef]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M. 1994; Taxanomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  24. Suresh K., Prabagaran S. R., Sengupta S., Shivaji S. 2004a; Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:1369–1375 [CrossRef]
    [Google Scholar]
  25. Suresh K., Reddy G. S. N., Sengupta S., Shivaji S. 2004b; Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461 [CrossRef]
    [Google Scholar]
  26. Switzer Blum J., Burns Bindi A., Buzzelli J., Stolz J. F., Oremland R. S. 1998; Bacillus arsenicoselenatis , sp. nov., and Bacillus selenitireducens , sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30 [CrossRef]
    [Google Scholar]
  27. Täubel M., Kämpfer P., Buczolits S., Lubitz W., Busse H.-J. 2003; Bacillus barbaricus sp. nov., isolated from an experimental wall painting. Int J Syst Evol Microbiol 53:725–730 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19:333–355
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63476-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63476-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error