1887

Abstract

Two sporulating bacterial strains designated CECAP06 and CECAP16 were isolated from the rhizosphere of the legume in Argentina. Almost-complete 16S rRNA gene sequences identified the isolates as a species. It was most closely related to LMG 18439 (99·6 % sequence similarity), LMG 20987 (99·4 % sequence similarity) and DSM 13822 (97·7 % sequence similarity). The cells of this novel species were motile, sporulating, rod-shaped, Gram-positive and strictly aerobic. The predominant fatty acids were anteiso-C, C and iso-C. The DNA G+C content of strains CECAP06 and CECAP16 was 51·3 and 50·9 mol%, respectively. Growth was observed from many carbohydrates, but gas production was not observed from glucose. Catalase and oxidase activities were present. The isolates produced -galactosidase and hydrolysed aesculin. Gelatinase, caseinase and urease were not produced. The results of DNA–DNA hybridization showed that the strains from this study constitute a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CECAP06 (=LMG 21955=CECT 5831).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63513-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551305.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63513-0&mimeType=html&fmt=ahah

References

  1. Abril A. B., Torres P. A., Bucher E. H. 2005; Nitrogen fixation by phyllosphere in dominant woody plants of the Western Chaco semiarid woodland of Argentina. J Trop Ecol 21:1–5 [CrossRef]
    [Google Scholar]
  2. Arahal D. R., García M. T., Ludwig W., Schleifer K. H., Ventosa A. 2001; Transfer of Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51:1443–1448
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D. 1994; Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB . List no. 51. Int J Syst Bacteriol 44:852–853 [CrossRef]
    [Google Scholar]
  4. Beatty P. H., Jensen S. E. 2002; Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans , the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169 [CrossRef]
    [Google Scholar]
  5. Berge O., Guinebretiere M. H., Achouak W., Normand P., Heulin T. 2002; Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616
    [Google Scholar]
  6. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL*. In Bergey's Manual of Systematic Bacteriology . , 1st edn. pp  1105–1138 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
  7. Daane L. L., Harjono I., Barns S. M., Launen L. A., Palleron N. J., Haggblom M. M. 2002; PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139
    [Google Scholar]
  8. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [CrossRef]
    [Google Scholar]
  9. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Elo S., Suominen I., Kämpfer P., Juhaoja J., Salkinoja-Salonen M., Haahtela K. 2001; Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51:535–545
    [Google Scholar]
  11. Felsenstein J. 1983; Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333 [CrossRef]
    [Google Scholar]
  12. Helbig J. 2001; Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (Isolate 18191. J Phytopathol 149:265–273 [CrossRef]
    [Google Scholar]
  13. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  655–681 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  15. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001 Molecular Evolutionary Genetics Analysis Software Tempe, AZ: Arizona State University;
    [Google Scholar]
  16. Lebuhn M., Heulin T., Hartmann A. 1997; Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334 [CrossRef]
    [Google Scholar]
  17. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882
    [Google Scholar]
  18. Logan N. A., De Clerck E., Lebbe L., Verhelst A., Goris J., Forsyth G., Rodríguez-Díaz M., Heyndrickx M., De Vos P. 2004; Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 54:1071–1076 [CrossRef]
    [Google Scholar]
  19. Ma B., Tromp J., Li M. 2002; PatternHunter: faster and more sensitive homology search. Bioinformatics 18:440–445 [CrossRef]
    [Google Scholar]
  20. Maes M., Baeyen S. 2003; Experiences and perspectives for the use of a Paenibacillus strain as plant protectant. Commun Agric Appl Biol Sci 68:457–462
    [Google Scholar]
  21. Meehan C., Bjourson A. J., McMullan G. 2001; Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int J Syst Evol Microbiol 51:1681–1685 [CrossRef]
    [Google Scholar]
  22. Peix A., Rivas R., Mateos P. F., Martínez-Molina E., Rodríguez-Barrueco C., Velázquez E. 2003; Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro . Int J Syst Evol Microbiol 53:2067–2072 [CrossRef]
    [Google Scholar]
  23. Rivas R., Sánchez M., Trujillo M. E., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Velázquez E. 2003a; Xylanimonas cellulosilytica gen. nov., sp. nov. a xylanolytic bacterium isolated from a decayed tree ( Ulmus nigra . Int J Syst Evol Microbiol 53:99–103 [CrossRef]
    [Google Scholar]
  24. Rivas R., Willems A., Subba-Rao N. S., Mateos P. F., Dazzo F. B., Kroppenstedt R. M., Martínez-Molina E., Gillis M., Velázquez E. 2003b; Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans , an aquatic legume from India. Syst Appl Microbiol 26:47–53 [CrossRef]
    [Google Scholar]
  25. Rzhetsky A., Nei M. 1993; Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  27. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis . Int J Syst Bacteriol 47:299–306 [CrossRef]
    [Google Scholar]
  28. Timmusk S., Wagner E. G. 1999; The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959 [CrossRef]
    [Google Scholar]
  29. Timmusk S., Nicander B., Granhall U., Tillberg E. 1999; Cytokinin production by Paenibacillus polymyxa . Soil Biol Biochem 31:1847–1852 [CrossRef]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  31. Valverde A., Velázquez E., Gutiérrez C., Cervantes E., Ventosa A., Igual J. M. 2003; Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris . Int J Syst Evol Microbiol 53:1979–1983 [CrossRef]
    [Google Scholar]
  32. Velázquez E., de Miguel T., Poza M., Rivas R., Rosselló-Mora R., Villa T. G. 2004; Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54:59–64 [CrossRef]
    [Google Scholar]
  33. von der Weid I., Frois-Duarte G., van Elsas J. D., Seldin L. 2002; Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153 [CrossRef]
    [Google Scholar]
  34. von der Weid I., Alviano D. S., Santos A. L., Soares R. M., Alviano C. S., Seldin L. 2003; Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 95:1143–1151 [CrossRef]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63513-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63513-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error