1887

Abstract

Two obligate anaerobes, TB8106 and WZH410, which degraded propionate in syntrophic association with methanogens, were isolated from two upflow anaerobic sludge blanket reactors, one treating brewery wastewater and the other bean curd wastewater. The strains were Gram-negative, non-spore-forming and non-motile. Cells were egg-shaped, with a size of 1·0–1·3×1·8–2·2 μm. Growth was observed at 20–48 °C and pH 6·2–8·8. Both strains converted propionate to acetate and methane in co-culture with methanogens, and grew on propionate plus sulfate in pure culture, with a doubling time of 52–55 h at 37 °C. Sulfate and thiosulfate both served as electron acceptors for propionate degradation. The DNA G+C contents of the two strains were 58·5 and 58·7 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strains were closely related to a propionate-oxidizing syntrophic bacterium, DSM 10017 (94·7 % similarity). However, the novel strains could not ferment fumarate, and grew at a more alkaline pH range than . Moreover, the novel isolates had obviously higher growth rates on propionate plus sulfate (0·12 day) than DSM 10017 (0·024 day). Therefore, a novel species, sp. nov., is proposed, with strain TB8106 (=AS 1.5016=DSM 16706) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63565-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551319.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63565-0&mimeType=html&fmt=ahah

References

  1. Boone D. R., Bryant M. 1980; Propionate-degrading bacterium Syntrophobacter wolinii sp. nov. gen. nov. from methanogenic ecosystems. Appl Environ Microbiol 40:626–632
    [Google Scholar]
  2. Chen S., Dong X. 2004; Acetanaerobacterium elongatum gen. nov., sp. nov., from paper mill waste water. Int J Syst Evol Microbiol 54:2257–2262 [CrossRef]
    [Google Scholar]
  3. de Bok F. A. M., Stams A. J. M., Dijkema C., Boone D. R. 2001; Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei . Appl Environ Microbiol 67:1800–1804 [CrossRef]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  7. Harmsen H. J. M., Wullings B., Akkermans A. D. L., Ludwig W., Stams A. J. M. 1993; Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240
    [Google Scholar]
  8. Harmsen H. J. M., Kuijk B. L. M., Plugge C. M., Akkermans A. D. L., De Vos W. M., Stams A. J. M. 1998; Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate- degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387 [CrossRef]
    [Google Scholar]
  9. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  10. Houwen F. P., Plokker J., Stams A. J. M., Zehnder A. J. B. 1990; Enzymatic evidence for involvement of the methyl-malonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii . Arch Microbiol 155:52–55 [CrossRef]
    [Google Scholar]
  11. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  12. Imachi H., Sekiguchi Y., Kamagata Y., Hanada S., Ohashi A., Harada H. 2002; Pelotomaculum thermopropionicum gen. nov., sp. nov. an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  14. Liu Y., Balkwill D. L., Aldrich H. C., Drake G. R., Boone D. R. 1999; Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii . Int J Syst Bacteriol 49:545–556 [CrossRef]
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  17. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North sea oil reservoir. Int J Syst Bacteriol 46:397–402 [CrossRef]
    [Google Scholar]
  18. Plugge C. M., Dijkema C., Stams A. J. M. 1993; Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76 [CrossRef]
    [Google Scholar]
  19. Plugge C. M., Balk M., Stams A. J. M. 2001; Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52:391–399
    [Google Scholar]
  20. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Mol Biol Rev 61:262–280
    [Google Scholar]
  21. Stams A. J. M. 1994; Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66:271–294 [CrossRef]
    [Google Scholar]
  22. Stams A. J. M., Grolle K. C. F., Frijters C. T. M., Van Lier J. B. 1992; Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum . Appl Environ Microbiol 58:346–352
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882
    [Google Scholar]
  24. Wallrabenstein C., Hauschild E., Schink B. 1994; Pure culture and cytological properties of Syntrophobacter wolinii . FEMS Microbiol Lett 123:249–254 [CrossRef]
    [Google Scholar]
  25. Wallrabenstein C., Hauschild E., Schink B. 1995; Syntrophobacter pfennigii sp. nov. new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352 [CrossRef]
    [Google Scholar]
  26. Zehnder A. J. B. 1978; Ecology of methane formation. In Water Pollution Microbiology pp  349–376 Edited by Mitchell R. New York: Wiley;
    [Google Scholar]
  27. Zellner G., Busmann A., Rainey F. A., Diekmann H. 1996; A syntrophic propionate-oxidizing, sulfate-reducing bacterium from a fluidized bed reactor. Syst Appl Microbiol 19:414–420 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63565-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63565-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error