1887

Abstract

A Gram-positive bacterium, designated strain AG019, was isolated by micromanipulation from aerobic granules obtained from a laboratory-scale sequencing batch reactor. This isolate grew axenically as cocci clustered predominantly in tetrads, and was morphologically similar to the dominant organisms observed in the biomass. The morphology also resembled that of the tetrad-forming organisms commonly seen in activated sludge samples. Strain AG019 was found to be an oxidase-negative, catalase-positive, non-motile aerobe that does not reduce nitrate and grows at temperatures between 15 and 40 °C, with an optimum at 37 °C. The pH range for growth was 5·0–9·0, with an optimum at pH 7·5. Strain AG019 contained a peptidoglycan with directly cross-linked -diaminopimelic acid (type A1) and lacked mycolic acids. The G+C content of the DNA was 75 mol%. Menaquinone MK-8(H) was the major isoprenoid quinone. The bacterium stained positively for intracellular polyphosphate granules but not for poly--hydroxyalkanoates. It produced capsular material and showed autoaggregation ability. Phenotypic and 16S rRNA gene analyses showed that the bacterium differed sufficiently from its closest phylogenetic relatives, namely members of the suborder , which includes the genera , , , , and , that it is proposed that it be placed in a novel genus, , as gen. nov., sp. nov. The type strain is AG019 (=ATCC BAA-1104=DSM 44889).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63583-0
2005-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551771.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63583-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3420 [CrossRef]
    [Google Scholar]
  2. Buck J. D. 1982; Non-staining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Cech J. S., Hartman P. 1990; Glucose induced breakdown of enhanced biological phosphate removal. Environ Technol 11:651–656 [CrossRef]
    [Google Scholar]
  4. Cech J. S., Hartman P., Macek M. 1994; Bacteria and protozoa population dynamics in biological phosphate removal systems. Water Sci Technol 29:109–117
    [Google Scholar]
  5. Christensson M., Blackall L. L., Welander T. 1998; Metabolic transformations and characterization of the sludge community in an enhanced biological phosphorus removal system. Appl Microbiol Biotechnol 49:226–234 [CrossRef]
    [Google Scholar]
  6. Dulekgurgen E., Ovez S., Artan N., Orhon D. 2003; Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor. Biotechnol Lett 25:687–693 [CrossRef]
    [Google Scholar]
  7. Eppard M., Krumbein W. E., Koch C., Rhiel E., Staley J. T., Stackebrandt E. 1996; Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch Microbiol 166:12–22 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Hall T. 1997 BioEdit. Biological sequence alignment editor for Win 95/98/NT/2K/XP Carlsbad, CA: Ibis Therapeutics;
    [Google Scholar]
  10. Jang A., Yoon Y.-H., Kim I. S., Kim K.-S., Bishop P. L. 2003; Characterization and evaluation of aerobic granules in sequencing batch reactor. J Biotechnol 105:71–82 [CrossRef]
    [Google Scholar]
  11. Jiang H.-L., Tay J.-H., Tay S. T.-L. 2002; Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett Appl Microbiol 35:439–445 [CrossRef]
    [Google Scholar]
  12. Jiang H.-L., Tay J.-H., Tay S. T.-L. 2004; Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl Microbiol Biotechnol 63:602–608 [CrossRef]
    [Google Scholar]
  13. Lin Y.-M., Liu Y., Tay J. H. 2003; Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors. Appl Microbiol Biotechnol 62:430–435 [CrossRef]
    [Google Scholar]
  14. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111 [CrossRef]
    [Google Scholar]
  15. Malik A., Sakamoto M., Hanazaki S., Osawa M., Suzuki T., Tochigi M., Kakii K. 2003; Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl Environ Microbiol 69:6056–6063 [CrossRef]
    [Google Scholar]
  16. Maszenan A. M. 2000; The occurrence, characterization and biodiversity of “G-bacteria” in activated sludge systems . PhD thesis La Trobe University;
  17. Maszenan A. M., Seviour R. J., Patel B. K. C., Rees G. N., McDougall B. M. 1997; Amaricoccus gen. nov., a Gram-negative coccus occurring in regular packages or tetrads isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov.. Int J Syst Bacteriol 47:727–734 [CrossRef]
    [Google Scholar]
  18. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Rees G. N. 1999a; Tessaracoccus bendigoensis gen. nov., sp. nov. a Gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 49:459–468 [CrossRef]
    [Google Scholar]
  19. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Burghardt J., Webb R., Soddell J. A., Rees G. N. 1999b; Two Gram-positive cocci growing in aggregates of repeating groups of cocci isolated from activated sludge foam belong to the genus Friedmanniella as new species, Friedmanniella spumicola sp.nov. and Friedmanniella capsulata sp. nov. Int J Syst Bacteriol 49:1667–1680 [CrossRef]
    [Google Scholar]
  20. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Burghardt J., Tokiwa Y., Stratton H. M. 2000; Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp.nov. and Tetrasphaera australiensis sp. nov. Int J Syst Evol Microbiol 50:593–603 [CrossRef]
    [Google Scholar]
  21. Mohagheghi A., Grohmann K., Himmel M., Leighton L., Updegraff D. M. 1986; Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int J Syst Bacteriol 36:435–443 [CrossRef]
    [Google Scholar]
  22. Moy B. Y. P., Tay J. H., Toh S. K., Liu Y., Tay S. T.-L. 2002; High organic loading influences the physical characteristics of aerobic sludge granules. Lett Appl Microbiol 34:407–412 [CrossRef]
    [Google Scholar]
  23. Normand P., Orso S., Cournoyer B., Jeannin P., Chapelon C., Dawson J., Evtushenko L., Misra K. 1996; Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae . Int J Syst Bacteriol 46:1–9 [CrossRef]
    [Google Scholar]
  24. Pan S., Tay J. H., He Y. X., Tay S. T. L. 2004; The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Lett Appl Microbiol 38:158–163 [CrossRef]
    [Google Scholar]
  25. Phillips R. W., Wiegel J., Berry C. J., Fliermans C., Peacock A. D., White D. C., Shimkets L. J. 2002; Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram-positive bacterium. Int J Syst Evol Microbiol 52:933–938 [CrossRef]
    [Google Scholar]
  26. Rainey F. A., Schumann P., Prauser H., Toalster R., Stackebrandt E. 1993; Sporichthya polymorpha represents a novel line of descent within the order Actinomycetales . FEMS Microbiol Lett 109:263–269 [CrossRef]
    [Google Scholar]
  27. Rees G. N., Vasiliadis G., May J. W., Bayly R. C. 1992; Differentiation of polyphosphate and poly- β -hydroxybutyrate granules in an Acinetobacter sp. isolated from activated sludge. FEMS Microbiol Lett 94:171–174
    [Google Scholar]
  28. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:406–477
    [Google Scholar]
  29. Schumann P., Prauser H., Rainey F. A., Stackebrandt E., Hirsch P. 1997; Friedmanniella antarctica gen. nov., sp. nov. an ll-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Bacteriol 47:278–283 [CrossRef]
    [Google Scholar]
  30. Seviour R. J., Maszenan A. M., Soddell J. A., Tandoi V., Patel B. K. C., Kong Y.-H., Schumann P. 2000; Microbiology of the “G-bacteria” in activated sludge. Environ Microbiol 2:1–14 [CrossRef]
    [Google Scholar]
  31. Skerman V. B. D. 1968; A new type of micromanipulator and microforge. J Gen Microbiol 54:287–297 [CrossRef]
    [Google Scholar]
  32. Smibert R. M., Krieg N. L. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  34. Tamura T., Hayakawa M., Hatano K. 1999; Sporichthya brevicatena sp. nov. Int J Syst Bacteriol 49:1779–1784 [CrossRef]
    [Google Scholar]
  35. Tay J.-H., Liu Q.-S., Liu Y. 2001; Microscopic observation of aerobic granulation in sequential aerobic sludge reactor. J Appl Microbiol 91:168–175 [CrossRef]
    [Google Scholar]
  36. Tay J.-H., Yang S.-F., Liu Y. 2002; Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Appl Microbiol Biotechnol 59:332–337 [CrossRef]
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  38. Tsai C.-S., Liu W.-T. 2002; Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems. Water Sci Technol 46:179–184
    [Google Scholar]
  39. Williams T. M., Unz R. F. 1985; Isolation and characterization of filamentous bacteria present in bulking activated sludge. Appl Microbiol Biotechnol 22:273–282
    [Google Scholar]
  40. Winker S., Woese C. R. 1991; A definition of the domains Archaea , Bacteria , and Eucarya in terms of small ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310 [CrossRef]
    [Google Scholar]
  41. Yokota A., Tamura T., NishiI T., Hasegawa T. 1993; Kineococcus aurantiacus gen nov., sp. nov., a new aerobic Gram-positive, motile coccus with meso -diaminopimelic acid and arabinogalactan in the cell wall. Int J Syst Bacteriol 43:52–57 [CrossRef]
    [Google Scholar]
  42. Yoshimi Y., Hiraishi A., Nakamura K. 1996; Isolation and characterization of Microsphaera multipartita gen. nov., sp. nov. a polysaccharide-accumulating Gram-positive bacterium from activated sludge. Int J Syst Bacteriol 46:519–525 [CrossRef]
    [Google Scholar]
  43. Zeng R. J., Saunders A. M., Yuan Z.-G., Blackall L. L., Keller J. 2003; Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. Biotechnol Bioeng 83:140–148 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63583-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63583-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error