1887

Abstract

Bodonid flagellates (class Kinetoplastea) are abundant, free-living protozoa in freshwater, soil and marine habitats, with undersampled global biodiversity. To investigate overall bodonid diversity, kinetoplastid-specific PCR primers were used to amplify and sequence 18S rRNA genes from DNA extracted from 16 diverse environmental samples; of 39 different kinetoplastid sequences, 35 belong to the subclass Metakinetoplastina, where most group with the genus or the species , whilst four group with the subclass Prokinetoplastina (). To study divergence between freshwater and marine members of the genus , 26 new strains were cultured and their 18S rRNA genes were sequenced. It is shown that the morphospecies is a remarkably ancient species complex with a major marine clade nested among older freshwater clades, suggesting that these lineages were constrained physiologically from moving between these environments for most of their long history. Other major bodonid clades show less-deep separation between marine and freshwater strains, but have extensive genetic diversity within all lineages and an apparently biogeographically distinct distribution of subclades. Clade-specific 18S rRNA gene primers were used for two subclades to test their global distribution and genetic diversity. The non-overlap between environmental DNA sequences and those from cultures suggests that there are hundreds, possibly thousands, of different rRNA gene sequences of free-living bodonids globally.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63606-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2605.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63606-0&mimeType=html&fmt=ahah

References

  1. Al-Qassab S., Lee W. J., Murray S., Simpson A. G. B., Patterson D. J. 2002; Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool 41:91–144
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Arndt H., Dietrich D., Auer B., Cleven E.-J., Gräfenhan T., Weitere M., Mylnikov A. P. 2000; Functional diversity of heterotrophic flagellates in aquatic ecosystems. In The Flagellates: Unity, Diversity and Evolution pp  240–268 Edited by Leadbeater B. S. C., Green J. C. London: Taylor & Francis;
    [Google Scholar]
  4. Atkins M. S., Anderson O. R., Wirsen C. O. 1998; Effect of hydrostatic pressure on the growth rates and encystment of flagellated protozoa isolated from a deep-sea hydrothermal vent and a deep shelf region. Mar Ecol Prog Ser 171:85–95 [CrossRef]
    [Google Scholar]
  5. Atkins M. S., Teske A. P., Anderson O. R. 2000; A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411 [CrossRef]
    [Google Scholar]
  6. Bass D., Cavalier-Smith T. 2004; Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa. Int J Syst Evol Microbiol 54:2393–2404 [CrossRef]
    [Google Scholar]
  7. Berney C., Fahrni J., Pawlowski J. 2004; How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of environmental DNA surveys. BMC Biol 2:13 http://www.biomedcentral.com/1741-7007/2/13 [CrossRef]
    [Google Scholar]
  8. Brooker B. E. 1971; Fine structure of Bodo saltans and Bodo caudatus (Zoomastigophora, Protozoa) and their affinities with the Trypanosomatidae. Bull Brit Mus Nat Hist 22:89–102
    [Google Scholar]
  9. Callahan H. A., Litaker R. W., Noga E. J. 2002; Molecular taxonomy of the suborder Bodonina (order Kinetoplastida), including the important fish parasite, Ichthyobodo necator . J Eukaryot Microbiol 49:119–128 [CrossRef]
    [Google Scholar]
  10. Cavalier-Smith T. 1981; Eukaryote kingdoms: seven or nine?. Biosystems 14:461–481 [CrossRef]
    [Google Scholar]
  11. Cavalier-Smith T. 2002; The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76
    [Google Scholar]
  12. Cavalier-Smith T. 2003a; Protist phylogeny and the high-level classification of Protozoa. Eur J Protistol 39:338–348 [CrossRef]
    [Google Scholar]
  13. Cavalier-Smith T. 2003b; The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas , Eopharyngia) and Loukozoa emend (Jakobea Malawimonas): their evolutionary affinities and new higher taxa. Int J Syst Evol Microbiol 53:1741–1758 [CrossRef]
    [Google Scholar]
  14. Cavalier-Smith T. 2004; Only six kingdoms of life. Proc R Soc Lond B Biol Sci 271:1251–1262 [CrossRef]
    [Google Scholar]
  15. Coleman A. W. 2002; Microbial eukaryote species. Science 297:337
    [Google Scholar]
  16. Darling K. F., Kucera M., Pudsey C. J., Wade C. M. 2004; Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. Proc Natl Acad Sci U S A 101:7657–7662 [CrossRef]
    [Google Scholar]
  17. de Vargas C., Norris R., Zaninetti L., Gibb S. W., Pawlowski J. 1999; Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci U S A 96:2864–2868 [CrossRef]
    [Google Scholar]
  18. Doležel D., Jirků M., Maslov D. A., Lukeš J. 2000; Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. Int J Syst Evol Microbiol 50:1943–1951
    [Google Scholar]
  19. Ekelund F. 2002; Tolerance of soil flagellates to increased NaCl levels. J Eukaryot Microbiol 49:324–328 [CrossRef]
    [Google Scholar]
  20. Eyden B. P. 1977; Morphology and ultrastructure of Bodo designis Skuja 1948. Protistologica 13:169–179
    [Google Scholar]
  21. Finlay B. J. 2002; Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063 [CrossRef]
    [Google Scholar]
  22. Finlay B. J., Fenchel T. 1999; Divergent perspectives on protist species richness. Protist 150:229–233 [CrossRef]
    [Google Scholar]
  23. Finlay B. J., Fenchel T. 2004; Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155:237–244 [CrossRef]
    [Google Scholar]
  24. Finlay B. J., Corliss J. O., Esteban G., Fenchel T. 1996; Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q Rev Biol 71:221–237 [CrossRef]
    [Google Scholar]
  25. Finlay B. J., Esteban G. F., Fenchel T. 2004; Protist diversity is different?. Protist 155:15–22 [CrossRef]
    [Google Scholar]
  26. Fokin S. I., Przyboś E., Chivilev S. M., Beier C. L., Horn M., Skotarczak B., Wodecka B., Fujishima M. 2004; Morphological and molecular investigations of Paramecium schewiakoffi sp. nov. (Ciliophora Oligohymenophorea) and current status of distribution and taxonomy of Paramecium spp.. Eur J Protistol 40:225–243 [CrossRef]
    [Google Scholar]
  27. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  28. Huber T., Faulkner G., Hugenholtz P. 2004; bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319 [CrossRef]
    [Google Scholar]
  29. John U., Fensome R. A., Medlin L. K. 2003; The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense “species complex” (Dinophyceae. Mol Biol Evol 20:1015–1027 [CrossRef]
    [Google Scholar]
  30. Kucera M., Darling K. F. 2002; Cryptic species of planktonic foraminifera: their effect on palaeoceanographic reconstructions. Philos Trans R Soc Lond A 360:695–718 [CrossRef]
    [Google Scholar]
  31. Kühn S., Lange M., Medlin L. K. 2000; Phylogenetic position of Cryothecomonas inferred from nuclear-encoded small subunit ribsomal RNA. Protist 151:337–345 [CrossRef]
    [Google Scholar]
  32. Larsen J., Patterson D. J. 1990; Some flagellates (Protista) from tropical marine sediments. J Nat Hist 24:801–937 [CrossRef]
    [Google Scholar]
  33. Lee W. J., Patterson D. J. 1998; Diversity and geographic distribution of free-living heterotrophic flagellates – analysis by primer. Protist 149:229–244 [CrossRef]
    [Google Scholar]
  34. López-García P., Philippe H., Gail F., Moreira D. 2003; Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702 [CrossRef]
    [Google Scholar]
  35. Moon-van der Staay S. Y., De Wachter R., Vaulot D. 2001; Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610 [CrossRef]
    [Google Scholar]
  36. Moreira D., López-García P. 2002; The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38 [CrossRef]
    [Google Scholar]
  37. Moreira D., López-García P. 2003; Are hydrothermal vents oases for parasitic protists?. Trends Parasitol 19:556–558 [CrossRef]
    [Google Scholar]
  38. Moreira D., López-García P., Vickerman K. 2004; An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int J Syst Evol Microbiol 54:1861–1875 [CrossRef]
    [Google Scholar]
  39. Nanney D. L., Meyer E. B., Simon E. M., Preparata R. M. 1989; Comparison of ribosomal and isozymic phylogenies of tetrahymenine ciliates. J Protozool 36:1–8 [CrossRef]
    [Google Scholar]
  40. Nanney D. L., Park C., Preparata R., Simon E. M. 1998; Comparison of sequence differences in a variable 23S rRNA domain among sets of cryptic species of ciliated protozoa. J Eukaryot Microbiol 45:91–100 [CrossRef]
    [Google Scholar]
  41. Patterson D. J., Lee W. J. 2000; Geographic distribution and diversity of free-living heterotrophic flagellates. In The Flagellates: Unity Diversity and Evolution pp  269–287 Edited by Leadbeater B. S. C., Green J. C. London: Taylor & Francis;
    [Google Scholar]
  42. Patterson D. J., Simpson A. G. B. 1996; Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur J Protistol 32:423–448 [CrossRef]
    [Google Scholar]
  43. Pawlowski J., Holzmann M. 2002; Molecular phylogeny of foraminifera: a review. Eur J Protistol 38:1–10 [CrossRef]
    [Google Scholar]
  44. Poinar G. Jr, Poinar R. 2004; Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber. Protist 155:305–310 [CrossRef]
    [Google Scholar]
  45. Porter S. M., Knoll A. H. 2000; Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360–385 [CrossRef]
    [Google Scholar]
  46. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 9:817–818
    [Google Scholar]
  47. Potter D., Lajeunesse T. C., Saunders G. W., Anderson R. A. 1997; Convergent evolution masks extensive biodiversity among marine coccoid picoplankton. Biodivers Conserv 6:99–107 [CrossRef]
    [Google Scholar]
  48. Rasmussen L. D., Ekelund F., Hansen L. H., Sørensen S. J., Johnsen K. 2001; Group-specific PCR primers to amplify 24S α -subunit rRNA genes from Kinetoplastida (Protozoa) used in denaturing gradient gel electrophoresis. Microb Ecol 42:109–115
    [Google Scholar]
  49. Robison-Cox J. F., Bateson M. M., Ward D. M. 1995; Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences. Appl Environ Microbiol 61:1240–1245
    [Google Scholar]
  50. Simpson A. G. B., Lukeš J., Roger A. J. 2002; The evolutionary history of kinetoplastids and their kinetoplasts. Mol Biol Evol 19:2071–2083 [CrossRef]
    [Google Scholar]
  51. Skuja H. 1948; Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb Bot Upsal 9:1–399 (in German
    [Google Scholar]
  52. Smirnov A., Thar R. 2003; Spatial distribution of Gymnamoebae (Rhizopoda, Lobosea) in brackish-water sediments at the scale of centimeters and millimeters. Protist 154:359–369 [CrossRef]
    [Google Scholar]
  53. Stechmann A., Cavalier-Smith T. 2003; The root of the eukaryote tree pinpointed. Curr Biol 13:R665–R666 [CrossRef]
    [Google Scholar]
  54. Swale E. M. F. 1973; A study of the colourless flagellate Rhynchomonas nasuta (Stokes) Klebs. Biol J Linn Soc 5:255–264 [CrossRef]
    [Google Scholar]
  55. Swofford D. L. 2001 paup*: Phylogenetic Analysis Using Parsimony (*and other methods) v. 4.0b6 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  56. UKNCC 2001 Catalogue of the UK National Culture Collection – List of Algae and Protozoa Oban, UK: United Kingdom National Culture Collection;
    [Google Scholar]
  57. van Hannen E. J., Mooij W., van Agterveld M. P., Gons H. J., Laanbroek H. J. 1999; Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:2478–2484
    [Google Scholar]
  58. Vickerman K. 1990; Phylum Zoomastigina, class Kinetoplastida. In Handbook of Protoctista pp  215–238 Edited by Margulis L., Corliss J. O., Melkonian M., Chapman D. J. Boston: Jones & Bartlett;
    [Google Scholar]
  59. von der Heyden S. 2004; Testing ubiquitous dispersal and freshwater/marine divergence within free-living protist groups . DPhil thesis University of Oxford;
  60. von der Heyden S., Chao E. E., Cavalier-Smith T. 2004a; Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. Eur J Phycol 39:343–350 [CrossRef]
    [Google Scholar]
  61. von der Heyden S., Chao E. E., Vickerman K., Cavalier-Smith T. 2004b; Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J Eukaryot Microbiol 51:402–416 [CrossRef]
    [Google Scholar]
  62. Vørs N. 1992; Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988–1990. Ophelia 36:1–109 [CrossRef]
    [Google Scholar]
  63. Vørs N. 1993; Marine heterotrophic amoebae, flagellates and heliozoa from Belize (Central America) and Tenerife (Canary Islands), with descriptions of new species, Luffisphaera bulbochaete N. Sp., L. longihastis N. Sp., L. turriformis N. Sp. and Paulinella intermedia N. Sp. J Eukaryot Microbiol 40:272–287 [CrossRef]
    [Google Scholar]
  64. Zettler L. A. A., Anderson O. R., Caron D. A. 1998; Insights on the diversity within a “species” of Thalassicolla (Spumellarida) based on 16S-like ribosomal RNA gene sequencing. J Eukaryot Microbiol 45:488–496 [CrossRef]
    [Google Scholar]
  65. Zhukov B. F. 1971; A key to colourless free-living flagellates of the suborder Bodonina Hollande. In Biology and Productivity of Freshwater Organisms pp  241–283 Edited by Kamshilov M. M. Leningrad: Science Press (in Russian;
    [Google Scholar]
  66. Zhukov B. F. 1991; The diversity of bodonids. In The Biology of Free-living Heterotrophic Flagellates pp  177–184 Edited by Patterson D. J, Larsen J. Oxford: Clarendon Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63606-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63606-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error