1887

Abstract

Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112 and 102) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to −2 °C, with respective temperature optima of 14 °C and 14–17 °C for strains 112 and 102. The isolated strains reduced Fe(III) using common fermentation products such as acetate, lactate, propionate, formate or hydrogen as electron donors, and they also grew with fumarate as the sole substrate. As alternatives to Fe(III), they reduced fumarate, S and Mn(IV). Based on 16S rRNA gene sequence similarity, strain 112 was most closely related to (97.0 %) and NZ27 (95.5 %), and strain 102 to Gra Mal 1 (96.3 %) and Gylac (95.9 %) within the . Strains 112 and 102 therefore represent novel species, for which the names sp. nov. (type strain 112=DSM 16958=JCM 12927) and sp. nov. (type strain 102=DSM 16956=JCM 12926) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63639-0
2006-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/5/1133.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63639-0&mimeType=html&fmt=ahah

References

  1. Bowman J. P., McCuaig R. D. 2003; Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483 [CrossRef]
    [Google Scholar]
  2. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov.,novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5 ω 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047 [CrossRef]
    [Google Scholar]
  3. Buchholz-Cleven B. E. E., Rattunde B., Straub K. L. 1997; Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20:301–309 [CrossRef]
    [Google Scholar]
  4. Coates J. D., Lonergan D. J., Phillips E. J. P., Jenter H., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch Microbiol 164:406–413 [CrossRef]
    [Google Scholar]
  5. Cord-Ruwisch R., Lovley D. R., Schink B. 1998; Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232–2236
    [Google Scholar]
  6. Dehning I., Schink B. 1989; Malonomonas rubra gen. nov., sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151:427–433 [CrossRef]
    [Google Scholar]
  7. Elvert M., Boetius A., Knittel K., Jørgensen B. B. 2003; Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419 [CrossRef]
    [Google Scholar]
  8. Finke N. 2003; The role of volatile fatty acids and hydrogen in the degradation of organic matter in marine sediments . PhD thesis University of Bremen; Germany:
  9. Finster K., Bak F. 1993; Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, gram-negative, sulfur-reducing eubacteria. Appl Environ Microbiol 59:1452–1460
    [Google Scholar]
  10. Finster K., Bak F., Pfennig N. 1994; Desulfuromonas acetexigen s sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch Microbiol 161:328–332 [CrossRef]
    [Google Scholar]
  11. Finster K., Coates J. D., Liesack W., Pfennig N. 1997; Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment. Int J Syst Bacteriol 47:754–758 [CrossRef]
    [Google Scholar]
  12. Holmes D. E., Nevin K. P., Lovley D. R. 2004a; Comparison of 16S rRNA, nifD , recA , gyrB , rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599 [CrossRef]
    [Google Scholar]
  13. Holmes D. E., Nicoll J. S., Bond D. R., Lovley D. R. 2004b; Potential role of a novel psychrotolerant member of the family Geobacteraceae , Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030 [CrossRef]
    [Google Scholar]
  14. Isaksen M. F., Teske A. 1996; Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166:160–168 [CrossRef]
    [Google Scholar]
  15. Knoblauch C., Jørgensen B. B. 1999; Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environ Microbiol 1:457–467 [CrossRef]
    [Google Scholar]
  16. Kolb S., Seelinger S., Springer N., Ludwig W., Schink B. 1998; The fermenting bacterium Malonomonas rubra is phylogenetically related to sulfur-reducing bacteria and contains a c-type cytochrome similar to those of sulfur and sulfate reducers. Syst Appl Microbiol 21:340–345 [CrossRef]
    [Google Scholar]
  17. Kostka J. E., Thamdrup B., Glud R. N., Canfield D. E. 1999; Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180:7–21 [CrossRef]
    [Google Scholar]
  18. Krumholz L. R. 1997; Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol 47:1262–1263 [CrossRef]
    [Google Scholar]
  19. Krumholz L. R., Sharp R., Fishbain S. S. 1996; A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol 62:4108–4113
    [Google Scholar]
  20. Liesack W., Finster K. 1994; Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp.nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44:753–758 [CrossRef]
    [Google Scholar]
  21. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J. P., Schmidt T. M., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408
    [Google Scholar]
  22. Lovley D. 2000; Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  23. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J. P., Gorby Y. A., Goodwin S. 1993; Geobacter metallireducens gen. nov. sp. nov, a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344 [CrossRef]
    [Google Scholar]
  24. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  25. Makemson J. C., Fulayfil N. R., Landry W., van Ert L. M., Wimpee C. F., Widder E. A., Case J. F. 1997; Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039 [CrossRef]
    [Google Scholar]
  26. Mußmann M., Ishii K., Rabus R., Amann R. 2005; Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7:405–418 [CrossRef]
    [Google Scholar]
  27. Nevin K. P., Holmes D. E., Woodard T. L., Hinlein E. S., Ostendorf D. W., Lovley D. R. 2005; Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55:1667–1674 [CrossRef]
    [Google Scholar]
  28. Nogi Y., Kato C., Horikoshi K. 1998; Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338 [CrossRef]
    [Google Scholar]
  29. Pfennig N., Biebl H. 1976; Desulfuromonas acetoxidans gen. nov. and sp. nov. a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12 [CrossRef]
    [Google Scholar]
  30. Purdy K. J., Nedwell D. B., Embley T. M. 2003; Analysis of sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69:3181–3191 [CrossRef]
    [Google Scholar]
  31. Ravenschlag K., Sahm K., Pernthaler J., Amann R. 1999; High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989
    [Google Scholar]
  32. Roden E. E., Lovley D. R. 1993; Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans . Appl Environ Microbiol 59:734–742
    [Google Scholar]
  33. Sagemann J., Jørgensen B. B., Greef O. 1998; Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol J 15:85–100 [CrossRef]
    [Google Scholar]
  34. Schink B. 1984; Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41 [CrossRef]
    [Google Scholar]
  35. Schink B., Pfennig N. 1982; Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov. a new strictly anaerobic, non-spore-forming bacterium. Arch Microbiol 133:195–201 [CrossRef]
    [Google Scholar]
  36. Schink B., Stieb M. 1983; Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov.. Appl Environ Microbiol 45:1905–1913
    [Google Scholar]
  37. Sørensen J., Jørgensen B. B. 1987; Early diagenesis in sediments from Danish coastal waters: microbial activity and Mn-Fe-S geochemistry. Geochim Cosmochim Acta 51:1583–1590 [CrossRef]
    [Google Scholar]
  38. Sørensen J., Christensen D., Jørgensen B. B. 1981; Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5–11
    [Google Scholar]
  39. Stookey L. L. 1970; Ferrozine – a new spectrophotometric reagent for iron. Anal Chem 42:779–781 [CrossRef]
    [Google Scholar]
  40. Sung Y., Ritalahti K. M., Sanford R. A., Urbance J. W., Flynn S. J., Tiedje J. M., Löffler F. E. 2003; Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69:2964–2974 [CrossRef]
    [Google Scholar]
  41. Thamdrup B. 2000; Bacterial manganese and iron reduction in aquatic sediments. Adv Microb Ecol 16:41–84
    [Google Scholar]
  42. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. Berlin: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63639-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63639-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error