1887

Abstract

A Gram-negative, motile, denitrifying bacterium (strain AcBE2-1) was isolated from activated sludge of a municipal wastewater treatment plant using 17-oestradiol (E2) as sole source of carbon and energy. Cells were curved rods, 0.4–0.8×0.8–2.0 μm in size, non-fermentative, non-spore-forming, oxidase-positive and catalase-negative. E2 was oxidized completely to carbon dioxide and water by reduction of nitrate to a mixture of dinitrogen monoxide and dinitrogen, with the intermediate accumulation of nitrite. Electron recoveries were between 90 and 100 %, taking assimilated E2 into account. With nitrate as the electron acceptor, the bacterium also grew on fatty acids (C to C), isobutyrate, crotonate, -lactate, pyruvate, fumarate and succinate. Phylogenetic analysis of its 16S rRNA gene sequence revealed that strain AcBE2-1 represents a separate line of descent within the family (). The closest relatives are the cholesterol-degrading, denitrifying bacteria DSM 13999 and strain 72Chol (=DSM 12783), with <93.9 % sequence similarity. The G+C content of the DNA was 61.4 mol%. Detection of a quinone system with ubiquinone Q-8 as the predominant compound and a fatty acid profile that included high concentrations of C 7/iso-C 2-OH and C, in addition to C 7 and small amounts of C 3-OH, supported the results of the phylogenetic analysis. On the basis of 16S rRNA gene sequence data in combination with chemotaxonomic and physiological data, strain AcBE2-1 (=DSM 16959=JCM 12830) is placed in a new genus gen. nov. as the type strain of the type species gen. nov., sp. nov.

Keyword(s): E2, 17β-oestradiol
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63672-0
2006-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1547.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63672-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Andersen H. R., Siegrist H., Halling-Sørensen B., Ternes T. 2003; Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol 37:4021–4026 [CrossRef]
    [Google Scholar]
  3. Breitmaier E., Jung G. 1995 Organische Chemie II , 2nd edn. Stuttgart: Thieme;
    [Google Scholar]
  4. Bruce R. A., Achenbach L. A., Coates J. D. 1999; Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ Microbiol 1:319–329 [CrossRef]
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  6. Collins M. D. 1985; Isoprenoid quinone analysis in bacterial classification and identification. In Chemical Methods in Bacterial Systematics pp  267–288 Edited by Goodfellow M., O'Donnell A. G. London: Academic Press;
    [Google Scholar]
  7. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354
    [Google Scholar]
  8. Coombe R. G., Tsong Y. Y., Hamilton P. B., Sih C. J. 1966; Mechanisms of steroid oxidation by microorganisms. X. Oxidative cleavage of estrone. J Biol Chem 241:1587–1595
    [Google Scholar]
  9. Crocetti G. R., Hugenholtz P., Bond P. L., Schuler A., Keller J., Jenkins D., Blackall L. L. 2000; Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182 [CrossRef]
    [Google Scholar]
  10. Fujii K., Kikuchi S., Satomi M., Ushio-Sata N., Morita N. 2002; Degradation of 17 β -estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl Environ Microbiol 68:2057–2060 [CrossRef]
    [Google Scholar]
  11. Fujii K., Satomi M., Morita N., Motomura T., Tanaka T., Kikuchi S. 2003; Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 53:47–52 [CrossRef]
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  14. Hanselman T. A., Graetz D. A., Wilkie A. C. 2003; Manure-borne estrogens as potential environmental contaminants: a review. Environ Sci Technol 37:5471–5478 [CrossRef]
    [Google Scholar]
  15. Harder J., Probian C. 1997; Anaerobic mineralization of cholesterol by a novel type of denitrifying bacterium. Arch Microbiol 167:269–274 [CrossRef]
    [Google Scholar]
  16. Joss A., Andersen H., Ternes T., Richle P. R., Siegrist H. 2004; Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environ Sci Technol 38:3047–3055 [CrossRef]
    [Google Scholar]
  17. Juretschko S., Loy A., Lehner A., Wagner M. 2002; The microbial community composition of a nitrifying–denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25:84–99 [CrossRef]
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  19. Kniemeyer O. 1998; Anaerober Abbau von Cholesterin durch das denitrifizierende Bakterium 72Chol . Diploma thesis University of Bremen, Germany (in German;
  20. Kuever J., Könnicke M., Galushko A., Drzyzga O. 2001; Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb.nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int J Syst Evol Microbiol 51:171–177
    [Google Scholar]
  21. Loy A., Schulz C., Lücker S., Schöpfer-Wendels A., Stoecker K., Baranyi C., Lehner A., Wagner M. 2005; 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “ Rhodocyclales ”. Appl Environ Microbiol 71:1373–1386 [CrossRef]
    [Google Scholar]
  22. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of desoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  24. Süßmuth R., Eberspächer J., Haag R., Springer W. 1987 Biochemisch-mikrobiologisches Praktikum Stuttgart: Thieme;
    [Google Scholar]
  25. Sumpter J. B., Johnson A. C. 2005; Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ Sci Technol 39:4321–4332 [CrossRef]
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Tarlera S., Denner E. B. M. 2003; Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β - Proteobacteria . Int J Syst Evol Microbiol 53:1085–1091 [CrossRef]
    [Google Scholar]
  28. Ternes T. A., Stumpf M., Mueller J., Haberer K., Wilken R.-D., Servos M. 1999; Behaviour and occurrence of estrogens in municipal sewage treatment plants. I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90 [CrossRef]
    [Google Scholar]
  29. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes. A Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification, Applications . , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  30. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400 [CrossRef]
    [Google Scholar]
  31. Widdel F., Kohring G. W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids. III. Characterization of the filamentous gliding Desulfonema limicola gen.nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
  32. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171
    [Google Scholar]
  33. Yoshimoto T., Nagai F., Fujimoto J. 7 other authors 2004; Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 70:5283–5289 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63672-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63672-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error