1887

Abstract

A bacterial strain (designated BB4), which has -glucosidase activity, was isolated from soil around the roots of bamboo plants. Cells were Gram-negative, aerobic, non-motile and straight-rod-shaped. Phylogenetic analysis of 16S rRNA gene sequences revealed a clear affiliation with members of the family ‘’. The 16S rRNA gene sequence of strain BB4 showed the following sequence similarities: 97·7 % to XD53, 97·1 % to LMG 1558, 96·2 % to LMG 19981, 94·3 % to RP5575 and <90 % to other members of the ‘’. The G+C content of the genomic DNA was 63·8 mol%. The major fatty acids were branched forms, especially large proportions of iso-C, iso-C and iso-C 9, similar to the profile of the genus . The results of DNA–DNA hybridization with XD53 and LMG 1558, in combination with phenotypic characteristics and 16S rRNA gene sequence analysis, demonstrated that strain BB4 should be classified as a novel species. The name sp. nov. is proposed, with strain BB4 (=KCTC 12359=NBRC 100831) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63695-0
2005-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551625.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63695-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  4. Gauthier M. J., Breittmayer V. A. 1992; The genera Alteromonas and Marinomonas . In The Prokaryotes , 2nd edn. pp  3046–3070 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  5. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  6. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  7. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  8. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  9. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  10. Mergaert J., Cnockaert M. C., Swings J. 2002; Fulvimonas soli gen. nov. sp. nov. a γ -proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 521285–1289 [CrossRef]
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  12. Nalin R., Simonet P., Vogel T. M., Normand P. 1999; Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23 [CrossRef]
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  14. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  15. Swings J., Gillis M., Kersters K., De Vos P., Gosselé F., De Ley J. 1980; Frateuria , a new genus for “ Acetobacter aurantius ”. Int J Syst Bacteriol 30:547–556 [CrossRef]
    [Google Scholar]
  16. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  17. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  19. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  20. Xie C.-H., Yokota A. 2005; Dyella japonica gen. nov., sp. nov., a γ -proteobacterium isolated from soil. Int J Syst Evol Microbiol 55:753–756 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63695-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63695-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error