1887

Abstract

A novel xylan-degrading bacterium, S3-E, was isolated from the biofilm of a membrane bioreactor. The cells of this strain were Gram-positive, non-motile, non-spore-forming rods, produced primary branches and formed yellow colonies on nutrient agar. The strain had chemotaxonomic markers that were consistent with classification in the genus , i.e. MK-12, MK-11 and MK-13 as the major menaquinones, predominant iso- and anteiso-branched cellular fatty acids, glucose and galactose as the cell-wall sugars, peptidoglycan-type B2 with glycolyl residues and a DNA G+C content of 69·7 mol%. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that strain S3-E is most similar to IFO 15708 and DSM 12966 (97·6 and 97·4 % sequence similarity, respectively), and that it forms a separate lineage with in the genus . DNA–DNA hybridization results and phenotypic properties showed that strain S3-E could be distinguished from all known species and represented a novel species, for which the name sp. nov. is proposed; the type strain is S3-E (=DSM 16914=KCTC 19079).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63706-0
2005-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs552075.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63706-0&mimeType=html&fmt=ahah

References

  1. Christov L. P., Prior B. A. 1993; Xylan removal from dissolving pulp using enzymes of Aureobasidium pullulans . Biotechnol Lett 15:1269–1274 [CrossRef]
    [Google Scholar]
  2. Collins M. D., Jones D., Kroppenstedt R. M. 1983; Reclassification of Brevibacterium imperiale (Steinhaus) and “ Corynebacterium laevaniformans ” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev., comb. nov. Syst Appl Microbiol 465–78 [CrossRef]
    [Google Scholar]
  3. Coughlan M. P., Hazlewood G. P. 1993; β -1,4-d-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289
    [Google Scholar]
  4. Dekker R. F. H., Richards G. N. 1976; Hemicellulases: their occurrence, purification, properties and mode of action. Adv Carbohydr Chem Biochem 32:277–352
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  8. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  9. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  10. Klatte S., Rainey F. A., Kroppenstedt R. M. 1994; Transfer of Rhodococcus aichiensis Tsukamurella 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int J Syst Bacteriol 44:769–773 [CrossRef]
    [Google Scholar]
  11. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  12. Minnikin D. E., Patel V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  13. Mudarris M., Austin B., Segers P., Vancanneyt M., Hoste B., Bernardet J. F. 1994; Flavobacterium scophthalmum sp. nov., a pathogen of turbot ( Scophthalmus maximus L.). Int J Syst Bacteriol 44:447–453 [CrossRef]
    [Google Scholar]
  14. Orla-Jensen S. 1919 The Lactic Acid Bacteria Copenhagen: Host & Sons;
    [Google Scholar]
  15. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a district actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI;
    [Google Scholar]
  18. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 34:407–477
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  20. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  21. Takeuchi M., Hatano K. 1998; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al . in a redefined genus Microbacterium . Int J Syst Bacteriol 48:739–747 [CrossRef]
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phased high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  23. Tarrand J. J., Groschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774
    [Google Scholar]
  24. Ten L. N., Im W.-T., Kim M.-K., Kang M. S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  26. Timmell T. E. 1967; Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70 [CrossRef]
    [Google Scholar]
  27. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccarovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  28. Uchida K., Kudo T., Suzuki K., Nagase T. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56 [CrossRef]
    [Google Scholar]
  29. Wong K. K. Y., Tan L. U. L., Saddler J. N. 1988; Multiplicity of β -1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63706-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63706-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error