1887

Abstract

A heterotrophic, antibiotic-producing bacterium, strain T5, was isolated from the German Wadden Sea, located in the southern region of the North Sea. Sequence analysis of the 16S rRNA gene of this strain demonstrated close affiliation with BS107 (99 % similarity), but the results of genotypic (DNA–DNA hybridization and DNA G+C content) and phenotypic characterization revealed that strain T5 represents a novel species. The novel organism is strictly aerobic, Gram-negative, rod-shaped, motile and forms brown-pigmented colonies. Strain T5 produces the antibiotic tropodithietic acid throughout the exponential phase which inhibits the growth of bacteria from different taxa, as well as marine algae. Strain T5 requires sodium ions and utilizes a wide range of substrates, including oligosaccharides, sugar alcohols, organic acids and amino acids. The DNA G+C content is 55.7 mol%. Comparative 16S rRNA gene sequence analysis revealed that strains T5 and BS107 group with as their closest described relative within the clade (97.9 and 97.6 % sequence similarity, respectively) and with (96.6 and 96.5 % similarity, respectively) of the . Comparison of strains T5 and BS107 with and showed striking differences in 16S rRNA gene sequence similarities, chemical composition, pigmentation, presence of bacteriochlorophyll and antibiotic production. On the basis of these results, it is proposed that is reclassified as the type species of a new genus, , as comb. nov. (type strain BS107=CIP 105210=ATCC 700781=NBRC 16654=DSM 17395). Strain T5 (=LMG 22475=DSM 16374) is proposed as the type strain of a novel species of this genus, sp. nov. At the same time, emended descriptions are provided of the genera , and , as well as reclassifying as the type species of a new genus, , with the name comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63724-0
2006-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1293.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63724-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Macián M. C., Garay E., Pujalte M. J. 2005; Thalassobius mediterraneus gen. nov., sp. nov. and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 55:2371–2376 [CrossRef]
    [Google Scholar]
  2. Badger J. H., Eisen J. A., Ward N. L. 2005; Genomic analysis of Hyphomonas neptunium contradicts 16S rRNA gene-based phylogenetic analysis: implications for the taxonomy of the orders ‘ Rhodobacterales ’ and Caulobacterales . Int J Syst Evol Microbiol 55:1021–1026 [CrossRef]
    [Google Scholar]
  3. Biebl H., Allgaier M., Tindall B. J., Koblizek M., Lünsdorf H., Pukall R., Wagner-Döbler I. 2005a; Dinoroseobacter shibae gen. nov., sp. nov. a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096 [CrossRef]
    [Google Scholar]
  4. Biebl H., Allgaier M., Lünsdorf H., Pukall R., Tindall B. J., Wagner-Döbler I. 2005b; Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a . Int J Syst Evol Microbiol 55:2377–2383 [CrossRef]
    [Google Scholar]
  5. Brinkhoff T., Muyzer G. 1997; Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63:3789–3796
    [Google Scholar]
  6. Brinkhoff T., Bach G., Heidorn T., Liang L., Schlingloff A., Simon M. 2004; Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565 [CrossRef]
    [Google Scholar]
  7. Cain A. J., Harrison G. A. 1960; Phyletic weighting. Proc Zool Soc Lond 131:1–31
    [Google Scholar]
  8. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  9. Chavez F. P., Lünsdorf H., Jerez C. A. 2004; Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072 [CrossRef]
    [Google Scholar]
  10. De Ley J. 1967; Molecular biology and bacterial phylogeny. In Evolutionary Biology vol 2 pp  103–156 Edited by Dobzhansky T., Hecht M. K., Steere W. C. New York: Plenum;
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  12. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  13. Giovannoni S., Rappé M. 2000; Evolution, diversity and molecular ecology of marine prokaryotes. In Microbial Ecology of the Ocean pp  47–84 Edited by Kirchman D. L. New York: Wiley;
    [Google Scholar]
  14. Gram L., Grossart H. P., Schlingloff A., Kiorboe T. 2002; Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 68:4111–4116 [CrossRef]
    [Google Scholar]
  15. Gregersen T. 1978; Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol 5:123–127 [CrossRef]
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Jahnke K. D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  18. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  19. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  20. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov. and Sulfitobacterbrevis sp. nov., α -3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  21. Labrenz M., Lawson P. A., Tindall B. J., Collins M. D., Hirsch P. 2005; Roseisalinus antarcticus gen. nov., sp. nov. a novel aerobic bacteriochlorophyll a -producing α -proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55:41–47 [CrossRef]
    [Google Scholar]
  22. Lafay B., Ruimy R., de Traubenberg C. R., Breittmayer V., Gauthier M. J., Christen R. 1995; Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima . Int J Syst Bacteriol 45:290–296 [CrossRef]
    [Google Scholar]
  23. Lee K.-B., Liu C.-T., Anzai Y., Kim H., Aono T., Oyaizu H. 2005; The hierarchical system of the ‘ Alphaproteobacteria ’: description of Hyphomonadaceae fam.nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919 [CrossRef]
    [Google Scholar]
  24. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  26. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40:213–215 [CrossRef]
    [Google Scholar]
  27. Neumann U., Mayer H., Schiltz E., Benz R., Weckesser J. 1995; Lipopolysaccharide and porin of Roseobacter denitrificans , confirming its phylogenetic relationship to the α -3 subgroup of the Proteobacteria . Microbiology 141:2013–2017 [CrossRef]
    [Google Scholar]
  28. Rathgeber C., Beatty J. T., Yurkov V. 2004; Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81:113–128 [CrossRef]
    [Google Scholar]
  29. Ruiz-Ponte C., Cilia V., Lambert C., Nicolas J. L. 1998; Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus . Int J Syst Bacteriol 48:537–542 [CrossRef]
    [Google Scholar]
  30. Ruiz-Ponte C., Samain J. F., Sanchez J. L., Nicolas J. L. 1999; The benefit of a Roseobacter species on the survival of scallop larvae. Mar Biotechnol 1:52–59 [CrossRef]
    [Google Scholar]
  31. Ryu E. 1937; A simple method of staining bacterial flagella. Kitasatoo Arch Exp Med 14:218–219
    [Google Scholar]
  32. Schaefer J. K., Goodwin K. D., McDonald I. R., Murrell J. C., Oremland R. S. 2002; Leisingera methylohalidivorans gen. nov., sp. nov. a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 52:851–859 [CrossRef]
    [Google Scholar]
  33. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a . Syst Appl Microbiol 14:140–145 [CrossRef]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics pp  158–160 Edited by Goodfellow M., O'Donnell A. G. London: Academic Press;
    [Google Scholar]
  36. Strömpl C., Tindall B. J., Jarvis G. N., Lünsdorf H., Moore E. R. B., Hippe H. 1999; A re-evaluation of the taxonomy of the genus Anaerovibrio , with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen.nov., comb. nov., and Anaerovibrioburkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 49, 1861–1872 [CrossRef]
  37. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  38. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  39. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  40. Tindall B. J. 1994; Chemical analysis of Archaea and Bacteria: a critical evaluation of its use in taxonomy and identification. In Bacterial Diversity and Systematics (FEMS Symposium, no. 75) pp  243–258 Edited by Priest F. G., Ramos-Cormenzana A., Tindall B. J. New York: Plenum;
    [Google Scholar]
  41. Tindall B. J. 1996; Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual , section 4.1.5 supplement 1 Edited by Akkermans A, de Bruijn F., van Elsas D. Dordrecht: Kluwer;
    [Google Scholar]
  42. Tindall B. J. 2002 Prokaryotic systematics: a theoretical overview. Encyclopedia of Life Sciences London: Wiley; http://els.wiley.com
    [Google Scholar]
  43. Tindall B. J. 2004; Prokaryotic diversity in the Antarctic: the tip of the Iceberg. Microb Ecol 47:271–283
    [Google Scholar]
  44. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [CrossRef]
    [Google Scholar]
  45. Uchino Y., Hirata A., Yokota A., Sugiyama J. 1998 Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen.nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov.,Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44201–210 [CrossRef]
  46. Uchino Y., Hirata A., Yokota A., Sugiyama J. 1999; Ruegeria algicola (basonym Roseobacter algicola ) comb. nov.In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB , List no. 68. Int J Svst Bacteriol 49:1–3 [CrossRef]
    [Google Scholar]
  47. Wagner-Döbler I., Rheims H., Felske A., El-Ghezal A., Flade-Schröder D., Laatsch H., Lang S., Pukall R., Tindall B. J. 2004; Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54:1177–1184 [CrossRef]
    [Google Scholar]
  48. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  49. Yurkov V. V., Beatty J. T. 1998; Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63724-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63724-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error