1887

Abstract

The aim of this study was to clarify the taxonomic position of the nitrogen-fixing and hydrogen-oxidizing bacteria strains IAM 12599, IAM 12664 and IAM 12665 and IAM 14368. It was found that the type strain of , IAM 12599, showed 99·9 and 96·1 % 16S rRNA gene sequence similarity to strains IAM 12665 and IAM 12664, respectively. A comparison using DNA–DNA hybridization suggested that strains IAM 12599 and IAM 12665 belong to a single species (89·7 %) and that strain IAM 12664 (35·1 %) forms a separate species. The phenotypic characteristics also support the conclusion that these bacteria should be identified as two species of a new genus: gen. nov., comb. nov. (type strain IAM 12599=DSM 1122=LMG 3321=ATCC 29712; reference strain IAM 12665=DSM 1123=LMG 3325=ATCC 29714) and sp. nov. (type strain IAM 12664=DSM 1124=LMG 3324=ATCC 29713). IAM 14368 was found to be closely related to the phototrophic bacterium , with 96·8 % 16S rRNA gene sequence similarity, but the two bacteria are quite different with respect to their metabolism and some significant phenotypic characteristics, suggesting that they cannot be included in a single genus. Further studies on their gene sequences, G+C content of the DNA and cellular fatty acid composition confirm that should be reclassified: the name gen. nov., comb. nov. is proposed, with the type strain IAM 14368 (=LMG 2256=ATCC 15946).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63733-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2419.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63733-0&mimeType=html&fmt=ahah

References

  1. Amakata D., Matsuo Y., Shimono K., Park J. K., Yun C. S., Matsuda H., Yokota A., Kawamukai M. 2005; Mitsuaria chitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the ‘ Betaproteobacteria ’.. Int J Syst Evol Microbiol 55:1927–1932 [CrossRef]
    [Google Scholar]
  2. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  3. Barraquio W. L., Padre B. C. Jr, Watanabe I., Knowles R. 1986; Nitrogen fixation by Pseudomonas saccharophila Douforoff ATCC 15946. J Gen Microbiol 132:237–241
    [Google Scholar]
  4. Doudoroff M. 1940; The oxidative assimilation of sugars and related substances by Pseudomonas saccharophila with a contribution to the problem of the direct respiration of di- and polysaccharides. Enzymologia 9:59–72
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Hiraishi A., Ueda Y., Ishihara I., Kamata H. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  8. Kersters K., De Ley J. 1984; Genus Alcaligenes Castellani and Chalmers 1919, 936AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  361–373 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Malik K. A., Jung C., Claus D., Schlegel H. G. 1981; Nitrogen fixation by the hydrogen-oxidizing bacterium Alcaligenes latus . Arch Microbiol 129:254–256 [CrossRef]
    [Google Scholar]
  11. Marmur J. 1961; A procedure of the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  12. Moulin L., Munive A., Dreyfus B., Boivin-Masson C. 2001; Nodulation of legumes by members of the β -subclass of Proteobacteria . Nature 411:948–950 [CrossRef]
    [Google Scholar]
  13. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894, 237AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  14. Palleroni N. J., Palleroni A. 1978; Alcaligenes latus , a new species of hydrogen-utilizing bacteria. Int J Syst Bacteriol 28:416–424 [CrossRef]
    [Google Scholar]
  15. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [CrossRef]
    [Google Scholar]
  16. Rosado A. S., Duarte G. F., Seldin L., Van Elsas L. D. 1998; Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Appl Environ Microbiol 64:2770–2779
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  19. Suyama T., Shigematsu T., Takaichi S., Nodasaka Y., Fujikawa S., Hosoya H., Tokiwa Y., Kanagawa T., Hanada S. 1999; Roseateles depolymerans gen. nov., sp. nov. a new bacteriochlorophyll a -containing obligate aerobe belonging to the β -subclass of the Proteobacteria . Int J Syst Bacteriol 49:449–457 [CrossRef]
    [Google Scholar]
  20. Swofford D. L. 1998 paup* – phylogenetic analysis using parsimony* and other methods, version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  23. Willems A., Gillis M., De Ley J. 1991; Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb. nov. and phylogenetic relationships with Leptothrix , Sphaerotilus natans , Pseudomonas saccharophila , and Alcaligenes latus . Int J Syst Bacteriol 41:65–73 [CrossRef]
    [Google Scholar]
  24. Xie C., Yokota A. 2003; Phylogenetic analysis of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef]
    [Google Scholar]
  25. Xie C., Yokota A. 2004; Phylogenetic analysis of the nitrogen-fixing genus Derxia . J Gen Appl Microbiol 50:129–135 [CrossRef]
    [Google Scholar]
  26. Young J. P. W. 1992; Phylogenetic classification of nitrogen-fixing organisms. In Biological Nitrogen Fixation pp  43–86 Edited by Stacey G., Burris R. H., Evans H. J. New York: Chapman & Hall;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63733-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63733-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error