1887

Abstract

Six bacterial strains isolated from the human oral cavity, PPPA16, PPPA20, PPPA24, PPPA31, EPPA6 and EPPA7, were characterized by determining phenotypic and biochemical features, cellular fatty acid profiles, menaquinone profiles and phylogenetic position based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that the isolates represented the same species of the genus . The strains were related to with about 89 % similarity. In addition, the isolates were related to sp. oral clone IDR-CEC-0032, which is a representative of the numerically dominant cluster VI in carious dentine lesions [ Nadkarni . (2004). , 5238–5244 ], with about 99 % similarity. The strains were obligately anaerobic, non-pigmenting, non-spore-forming, non-motile, Gram-negative rods. The isolates could be differentiated from other species by -mannitol, -melezitose, -sorbitol and -trehalose fermentation in API 20A tests. The cellular fatty acid composition of strains PPPA16, PPPA20, PPPA24, PPPA31, EPPA6 and EPPA7 was significantly different from that of other species. Compared with other species, only these six strains contained dimethyl acetals. The major menaquinones of the clinical isolates were MK-12 and MK-13, whereas the major menaquinones of other species were MK-10 and MK-11. On the basis of these data, a novel species, sp. nov., is proposed, with PPPA20 (=JCM 12954=DSM 17128) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63739-0
2005-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551839.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63739-0&mimeType=html&fmt=ahah

References

  1. Bailey G. D., Love D. N. 1995; Glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities and glucose utilization by species within the genera Bacteroides , Prevotella , and Porphyromonas . Int J Syst Bacteriol 45:246–249 [CrossRef]
    [Google Scholar]
  2. Dellinger C. A., Moore L. V. H. 1986; Use of the RapID-ANA system to screen for enzyme activities that differ among species of bile-inhibited Bacteroides . J Clin Microbiol 23:289–293
    [Google Scholar]
  3. Downes J., Sutcliffe I., Tanner A. C. R., Wade W. G. 2005; Prevotella marshii sp. nov. and Prevotella baroniae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 55:1551–1555 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Gharbia S. E., Shah H. N. 1991; Pathways of glutamate catabolism among Fusobacterium species. J Gen Microbiol 137:1201–1206 [CrossRef]
    [Google Scholar]
  6. Haapasalo M., Ranta H., Shah H., Ranta K., Lounatmaa K., Kroppenstedt R. M. 1986; Mitsuokella dentalis sp. nov. from dental root canals. Int J Syst Bacteriol 36:566–568 [CrossRef]
    [Google Scholar]
  7. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  9. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  10. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  11. Laughon B. E., Syed S. A., Loesche W. J. 1982; API ZYM system for identification of Bacteroides spp., Capnocytophaga spp., and spirochetes of oral origin. J Clin Microbiol 15:97–102
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Mayberry W. R., Lambe D. W. Jr, Ferguson K. P. 1982; Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32:21–27 [CrossRef]
    [Google Scholar]
  14. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  15. Miyagawa E., Azuma R., Suto T. 1979; Cellular fatty acid composition in gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25:41–51 [CrossRef]
    [Google Scholar]
  16. Nadkarni M. A., Caldon C. E., Chhour K.-L., Fisher I. P., Martin F. E., Jacques N. A., Hunter N. 2004; Carious dentine provides a habitat for a complex array of novel Prevotella -like bacteria. J Clin Microbiol 42:5238–5244 [CrossRef]
    [Google Scholar]
  17. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y. 2002a; Detection of novel oral phylotypes associated with periodontitis. FEMS Microbiol Lett 217:65–69 [CrossRef]
    [Google Scholar]
  20. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002b; Reclassification of Bacteroides forsythus (Tanner et al . 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52:841–849 [CrossRef]
    [Google Scholar]
  21. Sakamoto M., Suzuki M., Huang Y., Umeda M., Ishikawa I., Benno Y. 2004; Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 54:877–883 [CrossRef]
    [Google Scholar]
  22. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y. 2005; Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55:815–819 [CrossRef]
    [Google Scholar]
  23. Shah H. N. 1992; The genus Bacteroides and related taxa. In The Prokaryotes , 2nd edn. pp  3593–3607 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  24. Shah H. N., Collins M. D. 1980; Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J Appl Bacteriol 48:75–87 [CrossRef]
    [Google Scholar]
  25. Shah H. N., Collins M. D. 1983; Genus Bacteroides . A chemotaxonomical perspective. J Appl Bacteriol 55:403–416 [CrossRef]
    [Google Scholar]
  26. Shah H. N., Collins M. D. 1988; Proposal for reclassification of Bacteroides asaccharolyticus , Bacteroides gingivalis , and Bacteroides endodontalis in a new genus, Porphyromonas . Int J Syst Bacteriol 38:128–131 [CrossRef]
    [Google Scholar]
  27. Shah H. N., Collins M. D. 1989; Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39:85–87 [CrossRef]
    [Google Scholar]
  28. Shah H. N., Collins D. M. 1990; Prevotella , a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides . Int J Syst Bacteriol 40:205–208 [CrossRef]
    [Google Scholar]
  29. Slots J. 1981; Enzymatic characterization of some oral and nonoral gram-negative bacteria with the API ZYM system. J Clin Microbiol 14:288–294
    [Google Scholar]
  30. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  31. Tanner A. C. R., Strzempko M. N., Belsky C. A., McKinley G. A. 1985; API ZYM and API An-Ident reactions of fastidious oral gram-negative species. J Clin Microbiol 22:333–335
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  33. Willems A., Collins M. D. 1995; 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapasalo et al.) are genealogically highly related and are members of the genus Prevotella : emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov. Int J Syst Bacteriol 45:832–836 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63739-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63739-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error