1887

Abstract

Six red-pigmented strains of the with optimal growth between 45 and 54 °C were previously isolated from coloured biofilms in two fine-paper machines and one pulp dryer. The strains were found to be resistant to 15 p.p.m. 2,2-dibromo-3-nitrilopropionamide, a common industrial biocide. 16S RNA gene sequence similarity of the isolates was 99.7–100 %. Ribotyping using the restriction enzymes II and RI showed that four of the isolates (C-lvk-R2A-1, C-lvk-R2A-2, C-R2A-52d and C-R2A-5d) belong to a single species. 16S rRNA gene-based phylogenetic analysis revealed that, together with ATCC 33485, the isolates form a deep line of descent (94.7–94.9 % sequence similarity) within the family loosely affiliated with the clade. The isolates were strictly aerobic and oxidase-positive (catalase was weakly positive) and utilized a wide range of substrates including pentoses, hexoses, oligosaccharides and sugar alcohols. The predominant constituents in their cellular fatty acid profiles were C cyclo 8 (39–44 %), C (21–24 %) and C (21–23 %). Fatty acids present in smaller amounts included C 7, C 3-OH, C 7 11-methyl, C 6,9 and C cyclo, amongst others. Polar lipids included diphosphatidylglycerol, phosphatidylcholine and an unidentified aminolipid, but not phosphatidylethanolamine. Carotenoid pigments were synthesized but bacteriochlorophyll was not. The polyamine patterns consisted of the major compounds putrescine, spermidine and -homospermidine. The major respiratory lipoquinone was ubiquinone Q-10. The DNA G+C content was 69.4–70.2 mol%. On the basis of the phylogenetic and phenotypic evidence, the biofilm isolates were classified in a new genus, gen. nov.; four of the isolates are assigned to the type species, gen. nov., sp. nov. Strain C-lvk-R2A-2 (=CCUG 51817=DSM 16684=HAMBI 2421) is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63751-0
2006-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1355.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63751-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Baumgartner M., Yapi A., Gröbner-Ferreira R., Stetter K. O. 2003; Cultivation and properties of Echinamoeba thermarum n. sp., a extremely thermophilic amoeba thriving in hot springs. Extremophiles 7:267–274 [CrossRef]
    [Google Scholar]
  3. Blanco M. A., Negro C., Gaspar I., Tijero J. 1996; Mini-review: slime problems in the paper and board industry. Appl Microbiol Biotechnol 46:203–208 [CrossRef]
    [Google Scholar]
  4. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  5. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  8. Chaudhary A., Gupta L. K., Gupta J. K., Banerjee U. C. 1997; Studies on slime-forming organisms of a paper mill slime production and its control. J Ind Microbiol Biotechnol 18:348–352 [CrossRef]
    [Google Scholar]
  9. Cho J. C., Giovannoni S. J. 2004; Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly- β -hydroxybutyrate-producing marine bacteria in the order ‘ Rhodobacterales ’. Int J Syst Evol Microbiol 54:1129–1136 [CrossRef]
    [Google Scholar]
  10. Cole J. R., Chai B., Marsh T. L. 8 other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  11. Denner E. B. M., Paukner S., Kämpfer P., Moore E. R. B., Abraham W.-R., Busse H.-J., Wanner G., Lubitz W. 2001; Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841 [CrossRef]
    [Google Scholar]
  12. Desjardins é., Beaulieu C. 2003; Identification of bacteria contaminating pulp and a paper machine in a Canadian paper mill. J Ind Microbiol Biotechnol 30:141–145 [CrossRef]
    [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the vax. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  14. Doronina N. V., Trotsenko Y. A., Tourova T. P. 2000; Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50:1849–1859
    [Google Scholar]
  15. Felsenstein J. 1995 phylip – phylogeny inference package, version 3.57c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  16. Garrity G. M., Bell J. A., Lilburn T. 2005; Family I. Rhodobacteraceae fam. nov. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2, The Proteobacteria -, part C, The Alpha-, Beta-, Delta and Epsilonproteobacteria p– 161 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  17. Garrity G. M., Bell J. A., Lilburn T. 2006; Rhodobacteraceae fam. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published , Validation List, no 107. Int J Syst Evol Microbiol 56:1–6 [CrossRef]
    [Google Scholar]
  18. Hamana K., Takeuchi M. 1998; Polyamine profiles as chemotaxonomic markers within alpha, beta, gamma, delta, and epsilon subclasses of class Proteobacteria : distribution of 2-hydroxyputrescine and homospermidine. Microbiol Cult Coll 14:1–14
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  20. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  21. Kämpfer P., Buczolits S., Albrecht A., Busse H.-J., Stackebrandt E. 2003; Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896 [CrossRef]
    [Google Scholar]
  22. Kämpfer P., Busse H.-J., Rossello-Mora R., Kjellin E., Falsen E. 2004; Rhodovarius lipocyclicus gen. nov. sp. nov. a new genus of the α -1 subclass of the Proteobacteria . Syst Appl Microbiol 27:511–516 [CrossRef]
    [Google Scholar]
  23. Kolari M., Nuutinen J., Salkinoja-Salonen M. S. 2001; Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis . J Ind Microbiol Biotechnol 27:343–351 [CrossRef]
    [Google Scholar]
  24. Kolari M., Nuutinen J., Rainey F. A., Salkinoja-Salonen M. S. 2003; Colored moderately thermophilic bacteria in paper-machine biofilms. J Ind Microbiol Biotechnol 30:225–238 [CrossRef]
    [Google Scholar]
  25. Krauss J. H., Seydel U., Weckesser J., Mayer H. 1989; Structural analysis of the nontoxic lipid A of Rhodobacter capsulatus 37b4. Eur J Biochem 180:519–526 [CrossRef]
    [Google Scholar]
  26. Kuykendall L. D. 2005; Order VI. Rhizobiales ord. nov. In Bergey's Manual of Systematic Bacteriolog y, 2nd edn. vol 2 The Proteobacteria , part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria , p. 324. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  27. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  28. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  29. Labrenz M., Lawson P. A., Tindall B. J., Collins M. D., Hirsch P. 2005; Roseisalinus antarcticus gen. nov., sp. nov. a novel aerobic bacteriochlorophyll a -producing α -proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55:41–47 [CrossRef]
    [Google Scholar]
  30. Macián M. C., Arahal D. R., Garay E., Ludwig W., Schleifer K. H., Pujalte M. J. 2005; Thalassobacter stenotrophicus gen. nov., sp. nov. a novel marine α -proteobacterium isolated from Mediterranean sea water. Int J Syst Evol Microbiol 55:105–110 [CrossRef]
    [Google Scholar]
  31. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  32. Neumann U., Mayer H., Schlitz E., Benz R., Weckesser J. 1995; Lipopolysaccharide and porin of Roseobacter denitrificans , confirming its phylogenetic relationship to the α -3 subgroup of Proteobacteria . Microbiology 141:2013–2017 [CrossRef]
    [Google Scholar]
  33. Oppong D., King V. M., Zhou X., Bowen J. A. 2000; Cultural and biochemical diversity of pink-pigmented bacteria isolated from paper mill slimes. J Ind Microbiol Biotechnol 25:74–80 [CrossRef]
    [Google Scholar]
  34. Pearson W. R. 1990; Rapid and sensitive sequence comparison with fastp and fasta. Methods Enzymol 183:63–98
    [Google Scholar]
  35. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence analysis. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  36. Pellegrin V., Juretschko S., Wagner M., Cottenceau G. 1999; Morphological and biochemical properties of a Sphaerotilus sp. isolated from paper mill slimes. Appl Environ Microbiol 65:156–162
    [Google Scholar]
  37. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  38. Rättö M., Suihko M. L., Siika-aho M. 2005; Polysaccharide-producing bacteria isolated from paper machine slime deposits. J Ind Microbiol Biotechnol 32:109–114 [CrossRef]
    [Google Scholar]
  39. Rivas R., Sanchez-Marquez S., Mateos P. F., Martinez-Molina E., Velazquez E. 2005; Martelella mediterranea gen. nov., sp. nov. a novel α -proteobacterium isolated from a subterranean saline lake. Int J Syst Evol Microbiol 55:955–959 [CrossRef]
    [Google Scholar]
  40. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  41. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Stoesser G., Baker W., van den Broek A. 13 other authors 2002; The EMBL nucleotide sequence database. Nucleic Acids Res 30:21–26 http://www.ebi.ac.uk/embl/ [CrossRef]
    [Google Scholar]
  43. Suihko M.-L., Sinkko H., Partanen L., Mattila-Sandholm T., Salkinoja-Salonen M., Raaska L. 2004; Description of heterotrophic bacteria occurring in paper mills and paper products. J Appl Microbiol 97:1228–1235 [CrossRef]
    [Google Scholar]
  44. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  45. Tighe S. W., de Lajudie P., Dipietro K., Lindstrom K., Nick G., Jarvis B. D. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium , Bradyrhizobium , Mesorhizobium , Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [CrossRef]
    [Google Scholar]
  46. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  47. Väisänen O. M., Nurmiaho-Lassila E. L., Marmo S. A., Salkinoja-Salonen M. S. 1994; Structure and composition of biological slimes on paper and board machines. Appl Environ Microbiol 60:641–653
    [Google Scholar]
  48. Väisänen O. M., Weber A., Bennasar A., Rainey F. A., Busse H.-J., Salkinoja-Salonen M. S. 1998; Microbial communities of printing paper machines. J Appl Microbiol 84:1069–1084 [CrossRef]
    [Google Scholar]
  49. Wagner-Döbler I., Rheims H., Felske A., Pukall R., Tindall B. J. 2003; Jannaschia helgolandensis gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int J Syst Evol Microbiol 53:731–738 [CrossRef]
    [Google Scholar]
  50. Xie C.-H., Yokota A. 2005; Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa . Int J Syst Evol Microbiol 55:1233–1237 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63751-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63751-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error