1887

Abstract

A novel thermophilic, obligately methylotrophic, methanogenic archaeon, strain L2FAW, was isolated from a thermophilic laboratory-scale upflow anaerobic sludge blanket reactor fed with methanol as the carbon and energy source. Cells of strain L2FAW were non-motile, irregular cocci, 0·7–1·5 μm in diameter and usually occurred singly (sometimes forming clusters of two or four cells). The cells stained Gram-negative and lysed immediately in 0·1 % (w/v) SDS. Growth was inhibited by chloramphenicol and tetracycline, but not by penicillin, bacitracin, spectinomycin, vancomycin or kanamycin. Methanol and mono-, di- and trimethylamine were used as substrates, but H/CO, formate, acetate, propanol, dimethyl sulfide and methanethiol were not. The temperature range for growth was 42–58 °C, with an optimum at 50 °C. The fastest growth was observed at a salinity below 100 mM NaCl; no growth occurred above 300 mM NaCl. The optimal pH for growth was 6·5; growth was observed from pH 5 to pH 7·5. The G+C content of the genomic DNA was 37·6 mol%. Analysis of the 16S rRNA gene sequence and the partial methyl-CoM reductase gene sequence revealed that the organism was phylogenetically closely related to DMS1 (98 % similarity for the 16S rRNA gene sequence and 91 % similarity for the methyl-CoM reductase gene sequence). The DNA–DNA relatedness between L2FAW and DMS1 was 46 %. On the basis of these results, strain L2FAW (=DSM 17232=ATCC BAA-1173) represents the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63818-0
2005-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2465.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63818-0&mimeType=html&fmt=ahah

References

  1. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. 2004; GenBank: update. Nucleic Acids Res 32 (Database issue):D23–D26 [CrossRef]
    [Google Scholar]
  2. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38:212–219 [CrossRef]
    [Google Scholar]
  3. Boone D. R., Whitman W. B., Rouviere P. 1993; Diversity and taxonomy of methanogens. In Methanogenesis pp  35–80 Edited by Ferry J. G. New York: Chapman & Hall;
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  6. Franzmann P. D., Springer N., Ludwig W., Conway De Macario E., Rohde M. 1992; A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581 [CrossRef]
    [Google Scholar]
  7. Garcia J. L., Ollivier B., Patel B. K. C. 2000; Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226 [CrossRef]
    [Google Scholar]
  8. Hales B. A., Edwards C., Ritchie D. A., Hall G., Pickup R. W., Saunders J. R. 1996; Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675
    [Google Scholar]
  9. King G. M. 1984; Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments. Appl Environ Microbiol 48:719–725
    [Google Scholar]
  10. Lomans B. P., Maas R., Luderer R., Op den Camp H. J. M., Pol A., van der Drift C., Vogels G. D. 1999; Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65:3641–3650
    [Google Scholar]
  11. Lomans B. P., Luderer R., Steenbakkers P., Pol A., van der Drift C., Vogels G. D., Op den Camp H. J. M. 2001; Microbial populations involved in cycling of dimethyl sulfide and methanethiol in freshwater sediments. Appl Environ Microbiol 67:1044–1051 [CrossRef]
    [Google Scholar]
  12. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  13. Lueders T., Chin K. J., Conrad R., Friedrich M. 2001; Molecular analyses of methyl-coenzyme M reductase alpha-subunit ( mcrA ) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204 [CrossRef]
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  15. Mathrani I. M., Boone D. R., Mah R. A., Fox G. E., Lau P. P. 1988; Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38:139–142 [CrossRef]
    [Google Scholar]
  16. Mazumder T. K., Nishio N., Fukuzaki S., Nagai S. 1987; Production of extracellular vitamin B-12 compounds from methanol by Methanosarcina barkeri . Appl Microbiol Biotechnol 26:511–516 [CrossRef]
    [Google Scholar]
  17. Muyodi F. J. 2000; Microbiological analysis of the waters of Lake Victoria in relation to the invasion of the water hyacinth, Eichhornia crassipes (Mart.) Solms. In A case study of the lakeshores of Mwanza municipality pp  158–173 PhD thesis University of Dar es Salaam; Tanzania:
    [Google Scholar]
  18. Ollivier B., Lonbardo A., Garcia J. L. 1984; Isolation and characterization of a new thermophilic Methanosarcina strain (strain MP. Ann Microbiol (Paris 135b:187–198
    [Google Scholar]
  19. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516 [CrossRef]
    [Google Scholar]
  20. Paulo P. L., Jiang B., Roest K., van Lier J. B., Lettinga G. 2002; Start-up of a thermophilic methanol-fed UASB reactor: change in sludge characteristics. Water Sci Technol 45:145–150
    [Google Scholar]
  21. Plumb J. J., Bell J., Stuckey D. C. 2001; Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl Environ Microbiol 67:3226–3235 [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Schlotelburg C., Von Wintzingerode C., Hauck R., Von Wintzingerode F., Hegemann W., Göbel U. B. 2002; Microbial structure of an anaerobic bioreactor population that continuously dechlorinates 1,2-dichloropropane. FEMS Microbiol Ecol 39:229–237 [CrossRef]
    [Google Scholar]
  24. Simankova M. V., Kotsyurbenko O. R., Lueders T., Nozhevnikova A. N., Wagner B., Conrad R., Friedrich M. W. 2003; Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26:312–318 [CrossRef]
    [Google Scholar]
  25. Sprenger W. W., van Belzen M. C., Rosenberg J., Hackstein J. H., Keltjens J. T. 2000; Methanomicrococcus blatticola gen. nov., sp. nov. a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana . Int J Syst Evol Microbiol 50:1989–1999 [CrossRef]
    [Google Scholar]
  26. Springer E., Sachs M. S., Woese C. R., Boone D. R. 1995; Partial gene sequences for the A subunit of methyl-coenzyme M reductase ( mcr I) as a phylogenetic tool for the family Methanosarcinaceae . Int J Syst Bacteriol 45:554–559 [CrossRef]
    [Google Scholar]
  27. Stams A. J. M., van Dijk J. B., Dijkema C., Plugge C. M. 1993; Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119
    [Google Scholar]
  28. Touzel J. P., Petroff D., Albagnac G. 1985; Isolation and characterization of a new thermophilic Methanosarcina strain Chti-55. Syst Appl Microbiol 6:66–71 [CrossRef]
    [Google Scholar]
  29. Watanabe K., Kodama Y., Hamamura N., Kaku N. 2002; Diversity, abundance, and activity of archaeal populations in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity. Appl Environ Microbiol 68:3899–3907 [CrossRef]
    [Google Scholar]
  30. Yamaguchi M., Minami K., Tanimoto Y., Okamura K. 1989; Effects of volatile fatty acids on methanogenesis of methanol and of pregrowth with methanol on acetate utilization by methanogens. J Ferment Bioeng 68:428–432 [CrossRef]
    [Google Scholar]
  31. Zhilina T. N., Zavarzin G. A. 1987; Methanohalobium evestigatus , n. gen., n. sp. - an extremely halophilic methanogenic archaebacterium. Dokl Akad Nauk SSSR 293:464–468 (in Russian
    [Google Scholar]
  32. Zinder S. H., Mah R. A. 1979; Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008
    [Google Scholar]
  33. Zoetendal E. G., Akkermans A. D. L., de Vos W. M. 1998; Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63818-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63818-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error