1887

Abstract

Two Gram-negative, rod-shaped, non-spore-forming bacterial strains designated C42 and C52 were isolated in the Medical Clinic for Small Animals and Ungulates at the University for Veterinary Medicine Vienna, Austria. On the basis of 16S rRNA gene sequence similarity, both strains were shown to belong to the genus . Strain C42 showed the greatest levels of sequence similarity with DSM 14444 and KCTC 2881 (both 97·7 %). Strain C52 showed the greatest levels of sequence similarity with KCTC 2882 (97·2 %), KCTC 2881 (97·1 %) and DSM 14444 (97·0 %). The presence of Q-10 as the main ubiquinone, the predominance of the compound -homospermidine in the polyamine patterns, the presence of a -specific sphingoglycolipid in the polar lipid patterns, the presence of the fatty acid 2-OH C and the lack of 3-hydroxy fatty acids supported the identification of the two novel strains as members of the genus . Unique physiological characteristics, protein patterns, quantitative differences in their fatty acid profiles and the results of genomic fingerprinting and DNA–DNA hybridizations differentiated strains C42 and C52 from closely related species. Hence, the two strains are described as novel species of the genus . The names sp. nov. (type strain C42=LMG 21978=DSM 15867) and sp. nov. (type strain C52=LMG 21979=DSM 15761) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63872-0
2005-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2565.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63872-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Buonauria R., Stravato V., Kosako Y., Fujiwara N., Naka T., Kobayashi K., Cappelli C., Yabuuchi E. 2002; Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. Int J Syst Evol Microbiol 52:2081–2087 [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  5. Busse H.-J., Denner E., Kämpfer P. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Denner E., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp.nov. and Sphingomonas faeni sp. nov.,air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1995 phylip (phylogeny inference package), version 3.57c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  8. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Hauser E., Kämpfer P., Busse H.-J. 2004; Pseudomonas psychrotolerans sp. nov. Int J Syst Evol Microbiol 54:1633–1637 [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of “ Pseudomonas azotocolligans ” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Buczolits S., Albrecht A., Busse H.-J., Stackebrandt E. 2003; Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896 [CrossRef]
    [Google Scholar]
  13. Kosako Y., Yabuuchi E., Naka T., Fujiwara N., Kobayashi K. 2000; Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al . 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al . 1994, Porphyrobacter Fuerst et al . 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al . 1997, with the type genus Sphingomonas Yabuuchi et al . 1990. Microbiol Immunol 44:563–575 [CrossRef]
    [Google Scholar]
  14. Lee J.-S., Shin Y. K., Yoon J.-H., Takeuchi M., Pyun Y.-R., Park Y.-H. 2001; Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51:1491–1498
    [Google Scholar]
  15. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  16. Pearson W., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Takeuchi M., Hiraishi A. 2001; Taxonomic significance of 2-hydroxy fatty acid profiles of the species in the genus Sphingomonas and related taxa. IFO Res Commun 20:72–82
    [Google Scholar]
  19. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  21. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  22. Wieser M., Busse H.-J. 2000; Rapid identification of Staphylococcus epidermidis . Int J Syst Evol Microbiol 50:1087–1093 [CrossRef]
    [Google Scholar]
  23. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
  24. Zlamala C., Schumann P., Kämpfer P., Rosselló-Mora R., Lubitz W., Busse, H. J. 2002; Agrococcus baldri sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 52:1211–1216 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63872-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63872-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error