1887

Abstract

A novel alkalitolerant, sulphate-reducing bacterium (strain RT2) was isolated from alkaline district heating water. Strain RT2 was a motile vibrio (0.5–0.8 μm wide and 1.4–1.9 μm long) and grew at pH 6.9–9.9 (optimum at pH 9.0–9.4) and at 16–47 °C (optimum at 43 °C). The genomic DNA G+C content was 64.7 mol%. A limited number of compounds were used as electron donors with sulphate as electron acceptor, including lactate, pyruvate, formate and hydrogen/acetate. Sulphite and thiosulphate also served as electron acceptors. Based on physiological and genotypic properties, the isolate was considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RT2 (=DSM 16529=JCM 12612). The strain is the first alkali-tolerant member of the genus to be described.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63909-0
2006-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/5/1019.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63909-0&mimeType=html&fmt=ahah

References

  1. Abildgaard L., Ramsing N. B., Finster K. 2004; Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov. Int J Syst Evol Microbiol 54:393–399 [CrossRef]
    [Google Scholar]
  2. Baena S., Fardeau M. L., Labat M., Ollivier B., Garcia J. L., Patel B. K. 1998; Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulphate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst Appl Microbiol 21:498–504 [CrossRef]
    [Google Scholar]
  3. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [CrossRef]
    [Google Scholar]
  4. Dinh H. T., Kuever J., Mussmann M., Hassel A. W., Stratmann M., Widdel F. 2004; Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832 [CrossRef]
    [Google Scholar]
  5. Elsgaard L., Isaksen M. F., Jørgensen B. B., Alayse A.-M., Jannasch H. W. 1994; Microbial sulphate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58:3335–3343 [CrossRef]
    [Google Scholar]
  6. Fossing H., Jørgensen B. B. 1989; Measurement of bacterial sulphate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry 8:205–222
    [Google Scholar]
  7. Friedrich M. W. 2002; Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184:278–289 [CrossRef]
    [Google Scholar]
  8. Goeres D. M., Nielsen P. H., Smidt H. D., Frølund B. 1998; The effect of alkaline pH conditions on a sulphate reducing consortium from a Danish district heating plant. Biofouling 12:273–286 [CrossRef]
    [Google Scholar]
  9. Hamilton W. A. 1985; Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39:195–217 [CrossRef]
    [Google Scholar]
  10. Hamilton W. A. 1998; Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact. Biodegradation 9:202–212
    [Google Scholar]
  11. Hamilton W. A. 2003; Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76 [CrossRef]
    [Google Scholar]
  12. Hungate R. E. 1976; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  13. Ingvorsen K., Jørgensen B. B. 1984; Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio . Arch Microbiol 139:61–66 [CrossRef]
    [Google Scholar]
  14. Kjellerup B. V., Olesen B. H., Nielsen J. L., Frølund B., Ødum S., Nielsen P. H. 2003; Monitoring and characterization of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography. Water Sci Technol 47:117–122
    [Google Scholar]
  15. Kjellerup B. V., Thomsen T. R., Nielsen J. L., Olesen B. H., Frølund B., Nielsen P. H. 2005; Microbial diversity in biofilms from corroding heating systems. Biofouling 21:19–29 [CrossRef]
    [Google Scholar]
  16. Lovley D. 2000 Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn. release 34 12 January 2000 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  17. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  19. Mogensen G. L., Kjeldsen K. U., Ingvorsen K. 2005; Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulfate-reducing bacterium isolated from activated sludge. Anaerobe 11:339–349 [CrossRef]
    [Google Scholar]
  20. Pak K.-R., Lee H.-J., Lee H. K., Kim Y.-K., Oh Y.-S., Choi S.-C. 2003; Involvement of organic acid during corrosion of iron coupon by Desulfovibrio desulfuricans . J Microbiol Biotechnol 13:937–941
    [Google Scholar]
  21. Pankhania I. P. 1988; Hydrogen metabolism in sulphate-reducing bacteria and its role in anaerobic corrosion. Biofouling 1:27–47 [CrossRef]
    [Google Scholar]
  22. Peck H. D. Jr 1993; Bioenergetic strategies of the sulfate-reducing bacteria. In The Sulfate-Reducing Bacteria: Contemporary Perspectives pp  41–76 Edited by Odom J. M., Singleton R. Jr New York: Springer;
    [Google Scholar]
  23. Pikuta E. V., Zhilina T. N., Zarvarzin G. A., Kostrikina N. A., Osipov G. A., Rainey F. A. 1998; Desulfonatronum lacustre sp. nov. a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Mikrobiologiia 67:123–131 (in Russian
    [Google Scholar]
  24. Pikuta E., Lysenko A., Suzina N., Osipov G., Kuznetsov B., Tourova T., Akimenko V., Laurinavichius K. 2000; Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33 [CrossRef]
    [Google Scholar]
  25. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Cleland D., Krader P. 2003; Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332 [CrossRef]
    [Google Scholar]
  26. Postgate J. R. 1984; Genus Desulfovibrio Kluyver and van Niel 1936, 397AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  666–672 Edited by Krieg N. R., Holt J. G. Baltimore: William & Wilkins;
    [Google Scholar]
  27. Rao T. S., Sairam T. N., Viswanathan B., Nair K. V. K. 2000; Carbon steel corrosion by iron oxidizing and sulphate-reducing bacteria in a freshwater cooling system. Corros Sci 42:1417–1431 [CrossRef]
    [Google Scholar]
  28. Swofford D. L. 2003 paup* – Phylogenetic Analysis Using Parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  29. Thomsen T. R., Finster K., Ramsing N. B. 2001; Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656 [CrossRef]
    [Google Scholar]
  30. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  31. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic sulfate-reducing bacterium.. Int J Syst Bacteriol 47:144–149 [CrossRef]
    [Google Scholar]
  32. Zhilina T. N., Zavarzina D. G., Kuever J., Lysenko A. M., Zavarzin G. A. 2005; Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol 55:1001–1006 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63909-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63909-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error