1887

Abstract

A xylanolytic bacterium, US15, was isolated from swamp forest soil in Ulsan, Korea. The cells of the novel strain were Gram-positive, non-motile, short-rod-shaped and showed chemotaxonomic properties that were consistent with its classification in the genus . Chemotaxonomic results showed MK-12 and MK-11 as major menaquinones, predominating iso- and anteiso-branched cellular fatty acids, glucose, galactose and mannose as cell-wall sugars, peptidoglycan-type B2 with glycolyl residues and a DNA G+C content of 66·5 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain US15 was closely related to IFO 3750, IFO 12610 and LMG 20991 (96·9, 96·8 and 96·2 % similarities, respectively), and formed a separate lineage within the genus . Combined genotypic and phenotypic data showed that strain US15 (=DSM 16915=KCTC 19080) merits recognition as the type strain of a novel species within the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63945-0
2006-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/3/535.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63945-0&mimeType=html&fmt=ahah

References

  1. Biely P. 1985; Microbial xylanolytic systems. Trends Biotechnol 3:286–290 [CrossRef]
    [Google Scholar]
  2. Collins M. D., Jones D., Kroppenstedt R. M. 1983; Reclassification of Brevibacterium imperiale (Steinhaus) and “ Corynebacterium laevaniformans ” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 465–78 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  6. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  7. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  8. Klatte S., Rainey F. A., Kroppenstedt R. M. 1994; Transfer of Rhodococcus aichiensis Tsukamurella 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int J Syst Bacteriol 44:769–773 [CrossRef]
    [Google Scholar]
  9. Kuhad R. C., Singh A. 1993; Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172 [CrossRef]
    [Google Scholar]
  10. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  11. Minnikin D. E., Patel V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  12. Mudarris M., Austin B., Segers P., Vancanneyt M., Hoste B., Bernardet J. F. 1994; Flavobacterium scophthalmum sp. nov., a pathogen of turbot ( Scophthalmus maximus L.). Int J Syst Bacteriol 44:447–453 [CrossRef]
    [Google Scholar]
  13. Orla-Jensen S. 1919 The Lactic Acid Bacteria Copenhagen: Host & Sons;
    [Google Scholar]
  14. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a district actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  17. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  18. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  19. Takeuchi M., Hatano K. 1998; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al . in a redefined genus Microbacterium . Int J Syst Bacteriol 48:739–747 [CrossRef]
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Tarrand J. J., Groschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774
    [Google Scholar]
  22. Ten L. N., Im W.-T., Kim M.-K., Kang M. S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  24. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccarovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  25. Uchida K., Kudo T., Suzuki K. I., Nagase T. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56 [CrossRef]
    [Google Scholar]
  26. Uffen R. L. 1997; Xylan degradation: a glimpse at microbial diversity. J Ind Microbiol Biotechnol 19:1–6 [CrossRef]
    [Google Scholar]
  27. Wong K. K. Y., Tan L. U. L., Saddler J. N. 1988; Multiplicity of β -1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63945-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63945-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error