1887

Abstract

Anaerobic enrichments with acetate as electron donor and nitrate as electron acceptor at 4 M NaCl from inland, hypersaline lake sediments from Central Asia resulted in the isolation of several extremely halophilic bacteria that comprised two subgroups, most with vibrio-shaped cells and a single strain with rod-shaped cells. Members of both subgroups were extremely halophilic, with growth occurring in 2–5 M NaCl with an optimum at 2–3 M. 16S rRNA gene sequence analysis showed a close affiliation of the new isolates with DSM 3050 in the . However, phenotypic comparison of the denitrifying halophiles with the original description of demonstrated that they were more similar to another bacterium isolated from the same source at the same time, the extremely halophilic , which has since been reclassified as (DSM 3051). Direct cross-comparison showed that the characteristics of these two halophilic bacteria do not correspond with the original descriptions associated with these names and DSM numbers. While it is desirable that this problem be solved, in connection with the present investigations, this is a matter that can only be solved by a Request for an Opinion. On the basis of the phenotypic and genetic comparison of these isolates, it is proposed that the new denitrifying vibrio-shaped isolates represent a novel species, sp. nov. (type strain HGD 3=DSM 15503=UNIQEM U232) and that the rod-shaped isolate represents a novel genus and species, gen. nov., sp. nov. (type strain HGD 1-3=DSM 15505=UNIQEM U233).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63964-0
2006-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/2/379.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63964-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Baik K. S., Seong C. N., Kim E. M., Yi H., Bae K. S., Chun J. 2005; Hahella ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 55:681–684 [CrossRef]
    [Google Scholar]
  3. Clifford D., Liu X. 1993; Ion exchange for nitrate removal. AWWA J 85:135–142
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–140 [CrossRef]
    [Google Scholar]
  5. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas , and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  6. Dobson S. J., McMeekin T. A., Franzmann P. D. 1993; Phylogenetic relationships between some members of the genera Deleya , Halomonas , and Halovibrio . Int J Syst Bacteriol 43:665–673 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1989; phylip – phylogenetic inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  8. Fendrich C. 1988; Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and new halophilic aerobic coccoid Eubacterium from Great Salt Lake, Utah, USA. Syst Appl Microbiol 11:36–43 [CrossRef]
    [Google Scholar]
  9. Franzmann P. D., Tindall B. J. 1990; A chemotaxonomic study of members of the family Halomonadaceae . Syst Appl Microbiol 13:142–147 [CrossRef]
    [Google Scholar]
  10. Galinski E. A. 1995; Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328
    [Google Scholar]
  11. Galinski E. A., Herzog R. M. 1990; The role of trehalose as a substitute for nitrogen-containing compatible solutes ( Ectothiorhodospira halochloris . Arch Microbiol 153:607–613 [CrossRef]
    [Google Scholar]
  12. Garriga M., Ehrmann M. A., Arnau J., Hugas M., Vogel R. F. 1998; Carnimonas nigrificans gen. nov., sp. nov. a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48:677–686 [CrossRef]
    [Google Scholar]
  13. Gorshkova N. M., Ivanova E. P., Sergeev A. F., Zhukova N. V., Alexeeva Y., Wright J. P., Nicolau D. V., Mikhailov V. V., Christen R. 2003; Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53:2073–2078 [CrossRef]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  15. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  16. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. (editors) 1992 International Code of Nomenclature of Bacteria (1990 Revision): Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Lee H. K., Chun J., Moon E. Y., Ko S.-H., Lee D.-S., Lee H. S., Bae K. S. 2001; Hahella chejuensis gen. nov., sp. nov. an extracellular-polysaccharide-producing marine bacterium. Int J Syst Evol Microbiol 51661–666
    [Google Scholar]
  18. Liu C., Shao Z. 2005; Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186 [CrossRef]
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  20. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K. 1993; Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337
    [Google Scholar]
  21. Oren A. 2002 Halophilic Microorganisms and their Environments Dordrecht: Kluwer Academic;
    [Google Scholar]
  22. Pfennig N., Lippert K. D. 1966; über das Vitamin B12 – bedürfnis phototropher Schwefel bacterien. Arch Mikrobiol 55:245–256 (in German [CrossRef]
    [Google Scholar]
  23. Romanenko L. A., Schumann P., Rohde M., Zhukova N. V., Mikhailov V. V., Stackebrandt E. 2005; Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148 [CrossRef]
    [Google Scholar]
  24. Sorokin D. Yu., Tindall B. J. 2006; The status of the genus name Halovibrio Fendrich 1989 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas variabilis DSM 3051. Request for an Opinion. Int J Syst Evol Microbiol 56:487–489 [CrossRef]
    [Google Scholar]
  25. Sorokin D. Yu., Kuenen J. G., Jetten M. S. M. 2001; Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Arch Microbiol 175:94–101 [CrossRef]
    [Google Scholar]
  26. Spröer C., Lang E., Hobeck P., Burghardt J., Stackebrandt E., Tindall B. J. 1998; Transfer of Pseudomonas nautica to Marinobacter hydrocarbonoclasticus . Int J Syst Bacteriol 48:1445–1448 [CrossRef]
    [Google Scholar]
  27. Strömpl C., Tindall B. J., Jarvis G. N., Lünsdorf H., Moore E. R. B., Hippe H. 1999; A re-evaluation of the taxonomy of the genus Anaerovibrio , with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen.nov., comb. nov., and Anaerovibrioburkinabensis as Anaeroarcus burkinabensis [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 49, 1861–1872 [CrossRef]
    [Google Scholar]
  28. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  29. Tindall B. J. 1994; Chemical analysis of archaea and bacteria: a critical evaluation of its use in taxonomy and identification. In Bacterial Diversity and Systematics (FEMS Symposium no. 75) pp  243–258 Edited by Priest F. G., Ramos-Cormenzana A., Tindall B. J. New York: Plenum Press;
    [Google Scholar]
  30. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. 1996; Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540 [CrossRef]
    [Google Scholar]
  31. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  32. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  33. Wilkinson S. G. 1988; Gram-positive bacteria. In Microbial Lipids pp  117–201 Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  34. Wohlfarth A., Severin J., Galinski E. A. 1990; The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae . J Gen Microbiol 136:705–712 [CrossRef]
    [Google Scholar]
  35. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  36. Yi H., Chang Y.-H., Oh H. W., Bae K. S., Chun J. 2003; Zooshikella ganghwensis gen. nov., sp. nov., isolated from tidal flat sediments. Int J Syst Evol Microbiol 53:1013–1018 [CrossRef]
    [Google Scholar]
  37. Yoon J.-H., Kim I.-G., Oh T.-K., Park Y.-H. 2004a; Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 54:1111–1116 [CrossRef]
    [Google Scholar]
  38. Yoon J.-H., Yeo S.-H., Kim I.-G., Oh T.-K. 2004b; Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1799–1803 [CrossRef]
    [Google Scholar]
  39. Zumft W. G. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63964-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63964-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error