1887

Abstract

Three Gram-negative, non-motile, non-pigmented, oxidase-positive coccobacilli capable of growth at temperatures from −10 to 30 °C and salinities of 0 to 1.7 M NaCl were isolated from Siberian permafrost and characterized. Both 16S rRNA and gene sequencing studies placed the isolates in the within the genus . However, with higher bootstrap values and reproducible tree topologies, represented a more reliable phylogenetic marker for the taxonomy of species. DNA–DNA hybridization data supported tree topologies and established two relatedness groups within the three isolates; neither of these groups was related at the species level to any previously described species. The two groups of isolates could be differentiated phenotypically from 13 previously described species using API strips. These results support the existence of two novel species of , for which we propose the names sp. nov. (type strain K5=DSM 17306=VKM B-2378) and sp. nov. (type strain 273-4=DSM 17307=VKM B-2377).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64043-0
2006-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1285.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64043-0&mimeType=html&fmt=ahah

References

  1. Bakermans C., Tsapin A. I., Souza-Egipsy V., Gilichinsky D. A., Nealson K. H. 2003; Reproduction and metabolism at −10 °C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326 [CrossRef]
    [Google Scholar]
  2. Bowman J. P. 2005; The genus Psychrobacter . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community Edited by Dworkin M. New York: Springer; http://link.springer-ny.com/link/service/books/10125/
    [Google Scholar]
  3. Bowman J., Nichols D., McMeekin T. 1997; Psychrobacter glacincola sp. nov, a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice. Syst Appl Microbiol 20:209–215 [CrossRef]
    [Google Scholar]
  4. Bozal N., Montes M. J., Tudela E., Guinea J. 2003; Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp.nov. and Psychrobacter fozii sp. nov. Int J Syst Evol Microbiol 53:1093–1100 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine the genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 2004 phylip – Phylogeny Inference Package, version 3.6. Distributed by the author University of Washington; Seattle, USA:
    [Google Scholar]
  7. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  8. Gilichinsky D., Vorobyova E. A., Erokhina L. G., Fedorov-Davydov D. G., Chaikovskaya N. R. 1992; Long-term preservation of microbial ecosystems in permafrost. Adv Space Res 12:255–263
    [Google Scholar]
  9. Gilichinsky D., Rivkina E., Shcherbakova V., Laurinavichuis K., Tiedje J. 2003; Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341 [CrossRef]
    [Google Scholar]
  10. Gilichinsky D., Rivkina E., Bakermans C. 9 other authors 2005; Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128 [CrossRef]
    [Google Scholar]
  11. Gonzalez C. J., Santos J. A., Garcia-Lopez M. L., Otero A. 2000; Psychrobacters and related bacteria in freshwater fish. J Food Prot 63:315–321
    [Google Scholar]
  12. Gordon D. 2004; Viewing and editing assembled sequences using Consed. In Current Protocols in Bioinformatics pp. 11.12.11–11.12.43 Edited by Baxevanis A. D., Davison D. B. New York: Wiley;
    [Google Scholar]
  13. Juni E., Heym G. A. 1986; Psychrobacter immobilis gen. nov., sp. nov.: genospecies composed of gram-negative, aerobic, oxidase-positive coccobacilli. Int J Syst Bacteriol 36:388–391 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Albrecht A., Buczolits S., Busse H.-J. 2002; Psychrobacter faecalis sp. nov., a new species from a bioaerosol originating from pigeon faeces. Syst Appl Microbiol 25:31–36 [CrossRef]
    [Google Scholar]
  15. Konstantinidis K. T., Tiedje J. M. 2005; Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572 [CrossRef]
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  17. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  18. Maruyama A., Honda D., Yamamoto K., Kitamura K., Higashihara T. 2000; Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50:835–846 [CrossRef]
    [Google Scholar]
  19. Moss C. W., Wallace P. L., Hollis D. G., Weaver R. E. 1988; Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella ( Moraxella ) species, Oligella urethralis , Acinetobacter species, and Psychrobacter immobilis . J Clin Microbiol 26:484–492
    [Google Scholar]
  20. Navarrete A., Peacock A., Macnaughton S. J., Urmeneta J., Mas-Castellà J., White D. C., Guerrero R. 2000; Physiological status and community composition of microbial mats of the Ebro Delta, Spain, by signature lipid biomarkers. Microb Ecol 39:92–99 [CrossRef]
    [Google Scholar]
  21. Notredame C., Higgins D., Heringa J. 2000; T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217 [CrossRef]
    [Google Scholar]
  22. Olsen G. J., Matsuda H., Hagström R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  23. Ponder M. A., Gilmour S. J., Bergholz P. W., Mindock C. A., Hollingsworth R., Thomashow M. F., Tiedje J. M. 2005; Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115 [CrossRef]
    [Google Scholar]
  24. Reysenbach A. L., Wickham G. S., Pace N. R. 1994; Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring. Yellowstone National Park. Appl Environ Microbiol 60:2113–2119
    [Google Scholar]
  25. Romanenko L. A., Schumann P., Rohde M., Lysenko A. M., Mikhailov V. V., Stackebrandt E. 2002; Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int J Syst Evol Microbiol 52:1291–1297 [CrossRef]
    [Google Scholar]
  26. Sher A. V. 1974; Pleistocene mammals and stratigraphy of the Far Northeast USSR and North America. Int Geol Rev 16:1–282 [CrossRef]
    [Google Scholar]
  27. Shi T., Reeves R. H., Gilichinsky D. A., Friedmann E. I. 1997; Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179 [CrossRef]
    [Google Scholar]
  28. Stackebrandt E., Goebel B. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  29. Suzuki M. T., Giovannoni S. J. 1996; Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630
    [Google Scholar]
  30. Vela A. I., Collins M. D., Latre M. V., Mateos A., Moreno M. A., Hutson R., Dominguez L., Fernandez-Garayzabal J. F. 2003; Psychrobacter pulmonis sp. nov., isolated from the lungs of lambs. Int J Syst Evol Microbiol 53:415–419 [CrossRef]
    [Google Scholar]
  31. Vishnivetskaya T., Kathariou S., McGrath J., Gilichinsky D., Tiedje J. M. 2000; Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173 [CrossRef]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  33. Yamamoto S., Harayama S. 1996; Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511 [CrossRef]
    [Google Scholar]
  34. Yoon J.-H., Kang K. H., Park Y.-H. 2003; Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 53:449–454 [CrossRef]
    [Google Scholar]
  35. Yumoto I., Hirota K., Sogabe Y., Nodasaka Y., Yokota Y., Hoshino T. 2003; Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 53:1985–1989 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64043-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64043-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error