1887

Abstract

subsp. (type strain, DSM 1925) was found to use nitrate as a terminal electron acceptor, the latter being reduced to ammonium. Phylogenetic studies indicated that strain DSM 1925 was distantly related to the type strain of (95.4 % similarity of the small-subunit rRNA gene) and had as its closest phylogenetic relatives two other nitrate- and sulfate-reducing bacteria, namely (99.4 % similarity) and (98.4 % similarity). Additional experiments were conducted to characterize better strain DSM 1925. This strain incompletely oxidized lactate and ethanol to acetate. It also oxidized butanol, pyruvate and citrate, but not glucose, fructose, acetate, propionate, butyrate, methanol, glycerol or peptone. The optimum temperature for growth was 37 °C (range 16–50 °C) and the optimum NaCl concentration for growth was 0.1 % (range 0–5 %). Because of significant genotypic and phenotypic differences from and , reclassification of subsp. as sp. nov., comb. nov., is proposed. The type strain is strain Monticello 2 (=DSM 1925=NCIMB 9442=ATCC 33405).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64074-0
2006-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1495.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64074-0&mimeType=html&fmt=ahah

References

  1. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  2. Brauman A., Koenig J. F., Dutreix J., Garcia J. L. 1990; Characterization of two sulfate-reducing bacteria from the gut of the soil-feeding termite, Cubitermes speciosus . Antonie van Leeuwenhoek 58:271–275 [CrossRef]
    [Google Scholar]
  3. Breznak J. A., Brill W. J., Mertins J. W., Coppel H. C. 1973; Nitrogen fixation in termites. Nature 244:577–580 [CrossRef]
    [Google Scholar]
  4. Brune G., Schoberth S. M., Sahm H. 1983; Growth of a strictly anaerobic bacterium on furfural (2-furaldehyde). Appl Environ Microbiol 46:1187–1192
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  6. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  7. Costa V., Boopathy R., Manning J. 1996; Isolation and characterization of a sulfate-reducing bacterium that removed TNT (2,4,6-trinitrotoluene) under sulfate- and nitrate-reducing conditions. Bioresour Technol 56:273–278 [CrossRef]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  10. Fauque G., Ollivier B. 2004; Anaerobes: the sulfate-reducing bacteria as an example of metabolic diversity. In Microbial Diversity and Bioprospecting pp  169–176 Edited by Bull A. T. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  12. Folkerts M., Ney U., Kneifel H., Stackebrandt E., Witte E. G., Förstel H., Schoberth S. M., Sahm H. 1989; Desulfovibrio furfuralis sp. nov., a furfural degrading strictly anaerobic bacterium. Syst Appl Microbiol 11:161–169 [CrossRef]
    [Google Scholar]
  13. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  14. Hungate R. E. 1969; A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  15. Huß V. A. R., Festel H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  16. Jahnke K.-D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Keith S. M., Herbert R. A. 1983; Dissimilatory nitrate reduction by a strain of Desulfovibrio desulfuricans . FEMS Microbiol Lett 18:55–59 [CrossRef]
    [Google Scholar]
  19. Krekeler D., Cypionka H. 1995; The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiol Ecol 17:271–278 [CrossRef]
    [Google Scholar]
  20. Lie T. J., Clawson M. L., Godchaux W., Leadbetter E. R. 1999; Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov.. Appl Environ Microbiol 65:3328–3334
    [Google Scholar]
  21. Liu M.-C., Peck H. D. Jr 1981; The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. J Biol Chem 256:13159–13164
    [Google Scholar]
  22. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  24. Miranda-Tello E., Fardeau M.-L., Sepúlveda J., Fernández L., Cayol J. L., Thomas P., Ollivier B. 2003; Garciella nitratireducens gen. nov., sp. nov. an anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. Int J Syst Evol Microbiol 53:1509–1514 [CrossRef]
    [Google Scholar]
  25. Moura I., Bursakov S., Costa C., Moura J. J. G. 1997; Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe 3:279–290 [CrossRef]
    [Google Scholar]
  26. Pietzsch K., Babel W. 2003; A sulfate-reducing bacterium that can detoxify U(VI) and obtain energy via nitrate reduction. J Basic Microbiol 43:348–361 [CrossRef]
    [Google Scholar]
  27. Postgate J. R. 1963; A strain of Desulfovibrio able to use oxamate. Arch Mikrobiol 46:287–295 [CrossRef]
    [Google Scholar]
  28. Postgate J. R. 1984; Genus Desulfovibrio Kluyver and van Niel 1936, 397AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  666–672 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  29. Postgate J. R., Campbell L. L. 1966; Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 30:732–738
    [Google Scholar]
  30. Redburn A. C., Patel B. K. C. 1994; Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol Lett 115:33–38 [CrossRef]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:405–425
    [Google Scholar]
  32. Seitz H.-J., Cypionka H. 1986; Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol 146:63–67 [CrossRef]
    [Google Scholar]
  33. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved Lists of Bacterial Names. Int J Syst Bacteriol 30:225–420 [CrossRef]
    [Google Scholar]
  34. Steenkamp D. J., Peck H. D. Jr 1981; Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans . J Biol Chem 256:5450–5458
    [Google Scholar]
  35. Szewzyk R., Pfennig N. 1987; Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch Microbiol 147:163–168 [CrossRef]
    [Google Scholar]
  36. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180
    [Google Scholar]
  37. Trinkerl M., Breunig A., Schauder R., König H. 1990; Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite. Syst Appl Microbiol 13:372–377 [CrossRef]
    [Google Scholar]
  38. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  39. Widdel F., Pfennig N. 1982; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131:360–365 [CrossRef]
    [Google Scholar]
  40. Zellner G., Messner P., Kneifel H., Winter J. 1989; Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester. Arch Microbiol 152:329–334 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64074-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64074-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error