1887

Abstract

Two moderately halotolerant Gram-negative bacteria were isolated from tidal flat sediment of the South Sea in Korea (the Korea Strait). The strains, designated M9 and M18, were strictly aerobic, rod-shaped and non-spore-forming and motile with a flagellum and their major fatty acids were C and C cyclo 8. Strains M9 and M18 could grow in the presence of up to 13–15 % (w/v) NaCl, but their optimum salt concentrations were relatively low (0–3 %, w/v). The major predominant isoprenoid quinone was Q-8 and the G+C content of the genomic DNA was 57–58 mol%. Phylogenetic analyses and comparative 16S rRNA gene sequence studies revealed that strains M9 and M18 formed a phylogenetic lineage distinct from the genus within the class and were most closely related to the genera , and , with less than 92·5 % 16S rRNA gene sequence similarity. The level of 16S rRNA gene sequence similarity between the two strains was 96·7 %. On the basis of physiological and phylogenetic properties, strains M9 and M18 represent separate species within a novel genus of the class , for which the names gen. nov., sp. nov. (type species) and sp. nov. are proposed. The type strains of and are M9 (=KCTC 12356=DSM 16974) and M18 (=KCTC 12357=DSM 16975), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64075-0
2006-03-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/3/653.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64075-0&mimeType=html&fmt=ahah

References

  1. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  2. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  3. Distel D. L., Morrill W., MacLaren-Toussaint N., Franks D., Waterbury J. 2002; Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic γ -proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 52:2261–2269 [CrossRef]
    [Google Scholar]
  4. Ekborg N. A., Gonzalez J. M., Howard M. B., Taylor L. E., Hutcheson S. W., Weiner R. M. 2005; Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 55:1545–1549 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 2002 phylip – phylogeny inference package, version 3.6a. Distributed by the author University of Washington; Seattle, USA:
    [Google Scholar]
  6. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [CrossRef]
    [Google Scholar]
  7. Gerhardt P., Murray R. G. M., Wood W. A., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov. and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376 [CrossRef]
    [Google Scholar]
  9. Gorshkova N. M., Ivanova E. P., Sergeev A. F., Zhukova N. V., Alexeeva Y., Wright J. P., Nicolau D. V., Mikhailov V. V., Christen R. 2003; Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53:2073–2078 [CrossRef]
    [Google Scholar]
  10. Howard M. B., Ekborg N. A., Taylor L. E. II, Weiner R. M., Hutcheson S. W. 2004; Chitinase B of “ Microbulbifer degradans ” 2-40 contains two catalytic domains with different chitinolytic activities. J Bacteriol 186:1297–1303 [CrossRef]
    [Google Scholar]
  11. Huu N. B., Denner E. B. M., Ha D. T. C., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–208
    [Google Scholar]
  14. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  15. Lee E. M., Jeon C. O., Choi I., Chang K.-S., Kim C.-J. 2005; Silanimonas lenta gen. nov., sp., nov. a slightly thermophilic and alkaliphilic gammaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 55:385–389 [CrossRef]
    [Google Scholar]
  16. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  17. Marquez M. C., Ventosa A. 2005; Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 55:1349–1351 [CrossRef]
    [Google Scholar]
  18. Martín S., Márquez M. C., Sánchez-Porro C., Mellado E., Arahal D. R., Ventosa A. 2003; Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387 [CrossRef]
    [Google Scholar]
  19. Romanenko L. A., Schumann P., Rohde M., Zhukova N. V., Mikhailov V. V., Stackebrandt E. 2005; Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148 [CrossRef]
    [Google Scholar]
  20. Rossello-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67 [CrossRef]
    [Google Scholar]
  21. Satomi M., Kimura B., Hayashi M., Shouzen Y., Okuzumi M., Fujii T. 1998; Marinospirillum gen. nov., with descriptions of Marinospirillum megaterium sp. nov., isolated from kusaya gravy, and transfer of Oceanospirillum minutulum to Marinospirillum minutulum comb. nov. Int J Syst Bacteriol 48:1341–1348 [CrossRef]
    [Google Scholar]
  22. Satomi M., Kimura B., Hayashi M., Okuzumi M., Fujii T. 2004; Marinospirillum insulare sp. nov., a novel halophilic helical bacterium isolated from kusaya gravy. Int J Syst Evol Microbiol 54:163–167 [CrossRef]
    [Google Scholar]
  23. Shivaji S., Gupta P., Chaturvedi P., Suresh K., Delille D. 2005; Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55:1453–1456 [CrossRef]
    [Google Scholar]
  24. Stackebrandt E., Frederiksen W., Garrity G. M. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  25. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  27. Yoon J. H., Kim I. G., Shin D. Y., Kang K. H., Park Y. H. 2003a; Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57 [CrossRef]
    [Google Scholar]
  28. Yoon J. H., Kim H., Kang K. H., Oh T.-K., Park Y. H. 2003b; Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 53:1357–1361 [CrossRef]
    [Google Scholar]
  29. Yoon J. H., Kim I. G., Oh T. K., Park Y. H. 2004; Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 54:1111–1116 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64075-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64075-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error