1887

Abstract

A phenanthrene-degrading bacterium, strain TKP, was isolated from a fly ash dumping site of the thermal power plant in Panki, Kanpur, India, by an enrichment culture method using phenanthrene as the sole source of carbon and energy. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belonged to the genus , as it showed highest sequence similarity to DSM 11019 (97.3 %) and JCM 10874 (96.5 %), compared with only 91–93 % similarity to members of other genera such as , , and . In DNA–DNA hybridization experiments with strains that were closely related phylogenetically and in terms of 16S rRNA gene sequences, i.e. DSM 11019 and JCM 10874, strain TKP showed less than 70 % relatedness. Strain TKP contained sphingoglycolipids SGL-1 and SGL-2 and 18 : 17 as the predominant fatty acid, with 16 : 0 as a minor component and 14 : 0 2-OH as the major 2-hydroxy fatty acid. Thus, phylogenetic analysis, DNA–DNA hybridization, fatty acid and polar lipid profiles and differences in physiological and morphological features from the most closely related members of the group showed that strain TKP represents a distinct species of . The name sp. nov. is proposed, with the type strain TKP (=MTCC 7295=CCM 7327). JCM 10874 formed a coherent cluster with members of , did not reduce nitrate to nitrite and had a fatty acid profile similar to those of species; hence should be transferred to the genus as comb. nov., with the type strain JCM 10874 (=DSM 14926).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64080-0
2006-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/9/2147.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64080-0&mimeType=html&fmt=ahah

References

  1. Arden-Jones M. P., McCarthy A. J., Cross T. 1979; Taxonomic and serological studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 115:343–354 [CrossRef]
    [Google Scholar]
  2. Busse H. J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterization of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  3. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466
    [Google Scholar]
  4. Collins C. H., Lyne P. M., Grange J. M. 1989 Microbiological Methods , 6th edn. London: Butterworth;
    [Google Scholar]
  5. Felsenstein J. 1993 phylip – phylogeny inference package, version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  6. Fujii K., Urano N., Ushio H., Satomi M., Kimura S. 2001; Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol 51:603–610
    [Google Scholar]
  7. Goel A. K., Rajagopal L., Sonti R. V. 2001; Pigment and virulence deficiencies associated with mutations in the aroE gene of Xanthomonas oryzae pv. oryzae. Appl Environ Microbiol 67:245–250 [CrossRef]
    [Google Scholar]
  8. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca , Nocardia autotrophica , and the nocardin strain. Int J Syst Bacteriol 24:54–63 [CrossRef]
    [Google Scholar]
  9. Jenkins C. L., Andrewes A. G., McQuade T. J., Start M. P. 1979; The pigment of Pseudomonas paucimobilis is a carotenoid (nostoxanthin), rather than a brominated aryl-polyene (xanthomonadin). Curr Microbiol 3:1–4 [CrossRef]
    [Google Scholar]
  10. Jukes T., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kaur H., Cortes J., Leadlay P., Lal R. 2001; Cloning and partial characterization of putative rifamycin biosynthetic gene cluster from actinomycete Amycolatopsis mediterranei DSM 46095. Microbiol Res 165:239–246
    [Google Scholar]
  12. Kiyohara H., Nagao K., Kouno K., Yano K. 1982; Phenanthrene degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43:458–461
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  14. Maruyama T., Park H.-D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. nov., sp. nov. a microcystin-degrading bacterium. Int J Syst Evol Microbiol 5685–89 [CrossRef]
    [Google Scholar]
  15. McCarthy A. J., Cross T. 1984; A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130:5–25
    [Google Scholar]
  16. Miller L. T. 1982; A single derivatization method for bacterial fatty acid methyl esters including hydroxyl acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  17. Pal R., Bala S., Dadhwal M. 8 other authors 2005 Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp.nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [ Sphingomonas ] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972 [CrossRef]
  18. Pipe R. K., Moore M. N. 1986; An ultrastructural study on the effects of phenanthrene on lysosomal membranes and distribution of the lysosomal enzyme β -glucuronidase in digestive cells of the periwinkle Littorina littorea . Aquat Toxicol 8:65–76 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Samanta S. K., Chakraborti A. K., Jain R. K. 1999; Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53:98–107 [CrossRef]
    [Google Scholar]
  21. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analysis. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  24. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  25. Ushiba Y., Takahara Y., Ohta H. 2003; Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposal of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulate comb. nov. and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  28. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kabayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al . 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64080-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64080-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error