1887

Abstract

The four nitrogen-fixing bacteria so far described in the family belong to the genera and . Nitrogen-fixing bacterial strain RG1 was isolated from Kombucha tea and, based on the phylogenetic analysis of 16S rRNA gene sequence which is supported by a high bootstrap value, was found to belong to the genus . Strain RG1 differed from , the nearest member with a 16S rRNA gene sequence similarity of 98.2 %, and type strains of other species with regard to several characteristics of growth features in culture media, growth in nitrogen-free medium, production of -pyrone from glucose and dihydroxyacetone from glycerol. Strain RG1 utilized maltose, glycerol, sorbitol, fructose, galactose, arabinose and ethanol, but not methanol as a carbon source. These results, along with electrophoretic mobility patterns of nine metabolic enzymes, suggest that strain RG1 represents a novel nitrogen-fixing species. The ubiquinone present was Q-9 and DNA G+C content was 64.1 mol%. Strain RG1 exhibited a low value of 2–24 % DNA–DNA relatedness to the type strains of related acetobacters, which placed it as a separate taxon. On the basis of this data, the name sp. nov. is proposed, with the type strain RG1 (=MTCC 6912=LMG 23498).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64101-0
2006-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/8/1899.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64101-0&mimeType=html&fmt=ahah

References

  1. Blanc P. J. 1996; Characterization of the tea fungus metabolites. Biotechnol Lett 18:139–142 [CrossRef]
    [Google Scholar]
  2. Caballero-Mellado J., Martínez-Romero E. 1994; Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrphicus . Appl Environ Micrbiol 60:1532–1537
    [Google Scholar]
  3. Caballero-Mellado J., Fuentes-Ramírez L. E., Reis V. M., Martínez-Romero E. 1995; Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl Environ Microbiol 61:3008–3013
    [Google Scholar]
  4. Cavalcante V., Döbereiner J. 1988; A new acid tolerant nitrogen-fixing bacterium associated with the sugarcane. Plant Soil 108:23–31 [CrossRef]
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter , with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  8. Franke I. J., Fegan M., Hayward A. C., Sly L. I. 1998; Nucleotide sequence of the nifH gene coding for nitrogen reductase in the acetic acid bacterium Acetobacter diazotrophicus . Lett Appl Microbiol 26:12–16 [CrossRef]
    [Google Scholar]
  9. Fuentes-Ramírez L. E., Bustillos-Cristales R., Tapia-Herńandez A., Jimenez-Salgado T., Wang E. T., Martínez-Romero E., Caballero-Mellado J. 2001; Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314
    [Google Scholar]
  10. Jimenez-Salgado T., Fuentes-Ramírez L. E., Tapia-Herńandez A., Mascarúa-Esparza M. A., Martínez-Romero E., Caballero-Mellado J. 1997; Coffea arabica L., a new host plant for Acetobacter diazotrophicus , and isolation of other nitrogen-fixing Acetobacteria. Appl Environ Microbiol 63:3676–3683
    [Google Scholar]
  11. Jojima Y., Mihara Y., Suzuki S., Yokozeki K., Yamanaka S., Fudou R. 2004; Saccharibacter floricola gen. nov., sp. nov. a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54:2263–2267 [CrossRef]
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  13. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov., and Sulfitobacter brevis sp. nov., α -3- Proteobacteria from hypersaline, heliothermal and meromictic Antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  14. Lisdiyanti P., Kawasaki H., Seki T., Yamada Y., Uchimura T., Komagata K. 2000; Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp.nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J Gen Appl Microbiol 46:147–165 [CrossRef]
    [Google Scholar]
  15. Lisdiyanti P., Kawasaki H., Seki T., Yamada Y., Uchimura T., Komagata K. 2001; Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp.nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 47:119–131 [CrossRef]
    [Google Scholar]
  16. Lisdiyanti P., Kawasaki H., Widyastuti Y., Saono S., Seki T., Yamada Y., Uchimura T., Komagata K. 2002; Kozakia baliensis gen. nov., sp. nov. a novel acetic acid bacterium in the α-Proteobacteria . Int J Syst Evol Microbiol 52:813–818 [CrossRef]
    [Google Scholar]
  17. Loganathan P., Nair S. 2004; Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice ( Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190 [CrossRef]
    [Google Scholar]
  18. Lu S.-F., Lee F.-L., Chen H.-K. 1999; A thermotolerant and high acetic-acid producing bacterium Acetobacter sp. 114-2. J Appl Microbiol 86:55–62 [CrossRef]
    [Google Scholar]
  19. Musser J. M., Bemis D. A., Ishikawa H., Selander R. K. 1987; Clonal diversity and host distribution in Bordetella bronchiseptica . J Bacteriol 169:2793–2803
    [Google Scholar]
  20. Muthukumarasamy R., Revathi G., Seshadri S., Lakshminarsimhan C. 2002; Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus ), a promising diazotrophic endophyte in tropics. Current Science 83:137–145
    [Google Scholar]
  21. Muthukumarasamy R., Cleenwerck I., Revathi G. 8 other authors 2005; Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286 [CrossRef]
    [Google Scholar]
  22. Selander R. K., McKinney R. M., Whittam T. S., Bibb W. F., Brenner D. J., Nolte F. S., Pattison P. E. 1985; Genetic structures of populations of Legionella pneumophila . J Bacteriol 163:1021–1037
    [Google Scholar]
  23. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods in multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884
    [Google Scholar]
  24. Silva L. R., Cleenwerck I., Rivas R., Swings J., Trujillo M. E., Willems A., Velázquez E. 2006; Acetobacter oeni sp. nov., isolated from spoiled red wine. Int J Syst Evol Microbiol 56:21–24 [CrossRef]
    [Google Scholar]
  25. Sokollek S. J., Hertel C., Hammes W. P. 1998; Description of Acetobacter oboediens sp nov. and Acetobacter pomorum sp nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48:935–940 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  27. Stal L. J. 1988; Nitrogen fixation in cyanobacterial mats. Methods Enzymology 167:475–484
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  30. Yamada Y., Hoshino K., Ishikawa T. 1997; The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251 [CrossRef]
    [Google Scholar]
  31. Yamada Y., Katsura K., Kawasaki H., Widyastuti Y., Saono S., Seki T., Uchimura T., Komagata K. 2000; Asaia bogorensis gen. nov., sp. nov. an unusual acetic acid bacterium in the α - Proteobacteria . Int J Syst Evol Microbiol 50:823–829 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64101-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64101-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error