1887

Abstract

Strain DY, which was isolated from garden soil in Japan, was subjected to a polyphasic taxonomic study. Sequence analysis of the 16S rRNA gene and the GyrB protein revealed that the closest relative of strain DY was [] Sickles and Shaw 1934, with 94.8 and 90.1 % similarity, respectively. The two strains had similar chemotaxonomic characteristics, with menaquinone 7 as the major quinone system, 47.2–48.9 mol% DNA G+C content and 15 : 0 iso, 15 : 1 iso, 17 : 0 iso 3-OH and summed feature 3 as the major fatty acids. Based on genotypic and phenotypic characteristics, [] IAM 15098 could be clearly differentiated from other members of the genus . Strain DY and [] IAM 15098 could be easily distinguished from neighbouring taxa by morphological features (non-motile, non-gliding and non-filamentous single cells). Therefore, it is proposed that [] IAM 15098 and strain DY represent two separate species of a new genus, gen. nov., with the names comb. nov. (type species; type strain IAM 15098=ATCC 13524) and sp. nov. (type strain DY=IAM 15284=CCTCC AB205006), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64115-0
2006-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/5/1117.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64115-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  4. Fujita T., Okamoto M., Kosako Y., Okuhara M. 1996; Flexibacter japonensis sp. nov., a new species that produces a novel inhibitor of human leukocyte elastase isolated from soil. Curr Microbiol 33:89–93 [CrossRef]
    [Google Scholar]
  5. Gadkari D., Morsdorf G., Meyer O. 1992; Chemolithoautotrophic assimilation of dinitrogen by Streptomyces thermoautotrophicus UBT1: identification of an unusual N2-fixing system. J Bacteriol 174:6840–6843
    [Google Scholar]
  6. Hardy R. W. F., Holsten R. D., Jackson E. K., Burns R. C. 1968; The acetylene-reduction assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207 [CrossRef]
    [Google Scholar]
  7. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  8. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  9. Nakagawa Y., Yamasato K. 1996; Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: phylogenetic analysis of the Flavobacterium - Cytophaga complex. Int J Syst Bacteriol 46:599–603 [CrossRef]
    [Google Scholar]
  10. Nakagawa Y., Sakane T., Suzuki M., Hatano K. 2002; Phylogenetic structure of the genera Flexibacter , Flexithrix , and Microscilla deduced from 16S rRNA sequence analysis. J Gen Appl Microbiol 48:155–165 [CrossRef]
    [Google Scholar]
  11. Oyaizu H., Komagata K., Amemura A., Harada T. 1982; A succinoglycan-decomposing bacterium, Cytophaga arvensicola sp. nov.. J Gen Appl Microbiol 28:369–388 [CrossRef]
    [Google Scholar]
  12. Park J. K., Shimono K., Ochiai N., Shigeru K., Kurita M., Ohta Y., Tanaka K., Matsuda H., Kawamukai M. 1999; Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. J Bacteriol 181:6642–6649
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  14. Sasser M. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp  199–204 Edited by Klement Z., Rudolph K., Sands D. C. Budapest: Akadèmiai Kiadó;
    [Google Scholar]
  15. Sly L. I., Taghavi M., Fegan M. 1999; Phylogenetic position of Chitinophaga pinensis in the Flexibacter–Bacteroides–Cytophaga phylum. Int J Syst Bacteriol 49:479–481 [CrossRef]
    [Google Scholar]
  16. Steyn P. L., Pot B., Segers P., Kersters K., Joubert J. 1992; Some novel aerobic heparin degrading bacterial isolates. Syst Appl Microbiol 15:137–143
    [Google Scholar]
  17. Swofford D. L. 1998 paup* – Phylogenetic Analysis Using Parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Assosicates;
    [Google Scholar]
  18. Takeuchi M., Yokota A. 1992; Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov., and two genospecies of the genus Sphingobacterium and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 38:465–482 [CrossRef]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  20. Xie C.-H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef]
    [Google Scholar]
  21. Xie C.-H., Yokota A. 2005; Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 55:2419–2425 [CrossRef]
    [Google Scholar]
  22. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64115-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64115-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error