1887

Abstract

The characteristics of three species, , and , were examined. 16S rRNA gene sequence analysis showed that , and should not be classified as species within the genus . Although , and were phylogenetically related to , the ratios of anteiso-C to iso-C in whole-cell methanolysates of the three species were different from that of . In addition, whereas the major menaquinones of were MK-10 and MK-11, the major menaquinones of , and were MK-9 and MK-10. The three species were phenotypically similar to , but phylogenetically distinct. Furthermore, , and could be differentiated from (predominant menaquinones: MK-10 and MK-11) by the menaquinone composition. This is an important chemotaxonomic characteristic of the three species. On the basis of these data, a novel genus, gen. nov., is proposed for , and , with three species, gen. nov., comb. nov. (the type species), comb. nov. and comb. nov. The type strains of , and are JCM 5825 (=CCUG 4941=DSM 20701=ATCC 8503), JCM 13446 (=CCUG 48944) and JCM 9497 (=CCUG 38734=ATCC 43184), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64192-0
2006-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1599.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64192-0&mimeType=html&fmt=ahah

References

  1. Chen S., Dong X. 2005; Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int J Syst Evol Microbiol 55:2257–2261 [CrossRef]
    [Google Scholar]
  2. Conrads G., Citron D. M., Tyrrell K. L., Horz H.-P., Goldstein E. J. C. 2005; 16S–23S rRNA gene internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Porphyromonas . Int J Syst Evol Microbiol 55:607–613 [CrossRef]
    [Google Scholar]
  3. Dellinger C. A., Moore L. V. H. 1986; Use of the RapID-ANA system to screen for enzyme activities that differ among species of bile-inhibited Bacteroides . J Clin Microbiol 23:289–293
    [Google Scholar]
  4. Dewhirst F. E., Paster B. J., La Fontaine S., Rood J. I. 1990; Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb. nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb. nov.; and assignment of the genera Cardiobacterium , Dichelobacter , and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. Int J Syst Bacteriol 40:426–433 [CrossRef]
    [Google Scholar]
  5. Eggerth A. H., Gagnon B. H. 1933; The Bacteroides of human feces. J Bacteriol 25:389–413
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Hofstad T., Olsen I., Eribe E. R., Falsen E., Collins M. D., Lawson P. A. 2000; Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3. Int J Syst Evol Microbiol 50:2189–2195 [CrossRef]
    [Google Scholar]
  8. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  9. Holdeman L. V., Kelley R. W., Moore W. E. C. 1984; Genus I. Bacteroides Castellani and Chalmers 1919, 959AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  604–631 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  10. Johnson J. L., Moore W. E. C., Moore L. V. H. 1986; Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces. Int J Syst Bacteriol 36:499–501 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  14. Laughon B. E., Syed S. A., Loesche W. J. 1982; API ZYM system for identification of Bacteroides spp., Capnocytophaga spp., and spirochetes of oral origin. J Clin Microbiol 15:97–102
    [Google Scholar]
  15. Lawson P. A., Falsen E., Inganäs E., Weyant R. S., Collins M. D. 2002; Dysgonomonas mossi sp. nov., from human sources. Syst Appl Microbiol 25:194–197 [CrossRef]
    [Google Scholar]
  16. Liu C., Song Y., McTeague M., Vu A. W., Wexler H., Finegold S. M. 2003; Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group- and species-specific primers. FEMS Microbiol Lett 222:9–16 [CrossRef]
    [Google Scholar]
  17. Mayberry W. R., Lambe D. W. Jr, Ferguson K. P. 1982; Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32:21–27 [CrossRef]
    [Google Scholar]
  18. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  19. Miyagawa E., Azuma R., Suto T. 1979; Cellular fatty acid composition in gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25:41–51 [CrossRef]
    [Google Scholar]
  20. Moore L. V. H., Moore W. E. C. 1994; Oribaculum catoniae gen. nov., sp. nov.; Catonella morbi gen. nov., sp. nov.; Hallella seregens gen. nov., sp. nov.; Johnsonella ignava gen. nov., sp. nov.; and Dialister pneumosintes gen. nov., comb. nov., nom. rev., anaerobic gram-negative bacilli from the human gingival crevice. Int J Syst Bacteriol 44:187–192 [CrossRef]
    [Google Scholar]
  21. Moore W. E. C., Cato E. P., Moore L. V. H. 1985; Index of the bacterial and yeast nomenclatural changes published in the International Journal of Systematic Bacteriology since the 1980 Approved Lists of Bacterial Names (1 January 1980 to 1 January 1985). Int J Syst Bacteriol 35:382–407 [CrossRef]
    [Google Scholar]
  22. Paster B. J., Dewhirst F. E., Olsen I., Fraser G. J. 1994; Phylogeny of Bacteroides , Prevotella , and Porphyromonas spp. and related bacteria. J Bacteriol 176:725–732
    [Google Scholar]
  23. Rautio M., Eerola E., Väisänen-Tunkelrott M. L., Molitoris D., Lawson P., Collins M. D., Jousimies-Somer H. 2003; Reclassification of Bacteroides putredinis (Weinberg et al. , 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources.. Syst Appl Microbiol 26182–188 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al . 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849 [CrossRef]
    [Google Scholar]
  26. Shah H. N. 1992; The genus Bacteroides and related taxa. In The Prokaryotes , 2nd edn. pp  3593–3607 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  27. Shah H. N., Collins M. D. 1980; Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J Appl Bacteriol 48:75–87 [CrossRef]
    [Google Scholar]
  28. Shah H. N., Collins M. D. 1983; Genus Bacteroides . A chemotaxonomical perspective. J Appl Bacteriol 55:403–416 [CrossRef]
    [Google Scholar]
  29. Shah H. N., Collins M. D. 1989; Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39:85–87 [CrossRef]
    [Google Scholar]
  30. Slots J. 1981; Enzymatic characterization of some oral and nonoral gram-negative bacteria with the API ZYM system. J Clin Microbiol 14:288–294
    [Google Scholar]
  31. Song Y., Liu C., Lee J., Bolaňos M., Vaisanen M. L., Finegold S. M. 2005; Bacteroides goldsteinii sp. nov.” isolated from clinical specimens of human intestinal origin. J Clin Microbiol 43:4522–4527 [CrossRef]
    [Google Scholar]
  32. Tanner A. C. R., Strzempko M. N., Belsky C. A., McKinley G. A. 1985; API ZYM and API An-Ident reactions of fastidious oral gram-negative species. J Clin Microbiol 22:333–335
    [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  34. Ueki A., Akasaka H., Suzuki D., Ueki K. 2006; Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56:39–44 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64192-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64192-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error