1887

Abstract

The taxonomic positions of two actinobacterial strains isolated from Mariana Trench sediment were established using a combination of genotypic and phenotypic data. The strains, isolates MT2.1 and MT2.2, formed a distinct phyletic line in the 16S rRNA gene tree together with NCIMB 14084. The isolates had chemical and phenotypic properties typical of members of the genus and could be distinguished sharply from one another and from the type strains of and using DNA–DNA relatedness data. A range of phenotypic properties served to distinguish the two novel strains from one another and from the type strains of established species. The G+C contents of the DNAs of strains MT2.1 and MT2.2 were 66.8 and 69.1 mol%, respectively. It is evident that the two isolates merit recognition as novel species within the genus . The names proposed for these taxa are sp. nov. (type strain MT2.1=DSM 17574=NCIMB 14081) and sp. nov. (type strain MT2.2=DSM 17575=NCIMB 14084).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64250-0
2006-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2303.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64250-0&mimeType=html&fmt=ahah

References

  1. Becker K., Schumann P., Wüllenweber J., Schulte M., Weil H.-P., Stackebrandt E., Peters G., von Eiff C. 2002; Kytococcus schroeteri sp. nov., a novel Gram-positive actinobacterium isolated from a human clinical source. Int J Syst Evol Microbiol 52:1609–1614 [CrossRef]
    [Google Scholar]
  2. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp  265–309 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  3. Cordero M. R., Zumalacárregui J. M. 2000; Characterization of Micrococcaceae isolated from salt used for Spanish dry-cured ham. Lett Appl Microbiol 31:303–306 [CrossRef]
    [Google Scholar]
  4. De la Rosa M. C., Mohino M. R., Mohino M., Mosso M. A. 1990; Characteristics of micrococci and staphylococci isolated from semi-preserved meat products. Food Microbiol 7:207–215 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  9. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284 [CrossRef]
    [Google Scholar]
  10. Gordon R. E., Mihm J. M. 1962; Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98:628–636
    [Google Scholar]
  11. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov. a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [CrossRef]
    [Google Scholar]
  12. Hamid M. E., Minnikin D. E., Goodfellow M., Ridell M. 1993; Thin-layer chromatographic analysis of glycolipids and mycolic acids from Mycobacterium farcinogenes , Mycobacterium senegalense and related taxa. Zentralbl Bakteriol 279:354–367 [CrossRef]
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Kato C., Li L., Tamaoka J., Horikoshi K. 1997; Molecular analyses of the sediment of the 11,000-m deep Mariana Trench. Extremophiles 1:117–123 [CrossRef]
    [Google Scholar]
  15. Kloos W. E., Tornabene T. G., Schleifer K. H. 1974; Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae . Int J Syst Bacteriol 24:79–101 [CrossRef]
    [Google Scholar]
  16. Kluge A. G., Farris F. G. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  17. Kocur M., Schleifer K. H., Kloos W. E. 1975; Taxonomic status of Micrococcus nishinomiyaensis Oda 1935. Int J Syst Bacteriol 25:290–293 [CrossRef]
    [Google Scholar]
  18. Kovács G., Burghardt J., Pradella S., Schumann P., Stackebrandt E., Màrialigeti K. 1999; Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail ( Typha angustifolia . Int J Syst Bacteriol 49:167–173 [CrossRef]
    [Google Scholar]
  19. Lechevalier H. A., De Biévre C., Lechevalier M. P. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [CrossRef]
    [Google Scholar]
  20. Liu W.-T., Hanada S., Marsh T. L., Kamagata Y., Nakamura K. 2002; Kineosphaera limosa gen. nov., sp. nov. a novel Gram-positive polyhydroxyalkanoate-accumulating coccus isolated from activated sludge. Int J Syst Evol Microbiol 52:1845–1849 [CrossRef]
    [Google Scholar]
  21. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160
    [Google Scholar]
  22. McNabb A., Shuttleworth R., Behme R., Colby W. D. 1997; Fatty acid characterization of rapidly growing pathogenic aerobic actinomycetes as a means of identification. J Clin Microbiol 35:1361–1368
    [Google Scholar]
  23. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  24. Oda M. 1935; Bacteriological studies on waters used for brewing saké (part 6). I. Bacteriological studies on “miyamizu” (8) and (9). Micrococcus and Actinomyces isolated from “miyamizu”. Jozogaku Zasshi 13, 1202–1228 (in Japanese)
  25. Papamanoli E., Kotzekidou P., Tzanetakis N., Litopoulou-Tzanetaki E. 2002; Characterization of Micrococcaceae isolated from dry fermented sausage. Food Microbiol 19:441–449 [CrossRef]
    [Google Scholar]
  26. Pathom-aree W., Nogi Y., Sutcliffe I. C., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M. 2006a; Dermacoccus abyssi sp. nov., a novel piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 56:1233–1237 [CrossRef]
    [Google Scholar]
  27. Pathom-aree W., Stach J. E. M., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M. 2006b; Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189 [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  30. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  31. Schumann P., Spröer C., Burghardt J., Kovacs G., Stackebrandt E. 1999; Reclassification of the species Kocuria erythromyxa (Brooks and Murray 1981) as Kocuria rosea (Flügge 1886). Int J Syst Bacteriol 49:393–396 [CrossRef]
    [Google Scholar]
  32. Stackebrandt E., Schumann P. 2000; Description of Bogoriellaceae fam.nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov.and emendation of some families of the suborder Micrococcineae . Int J Syst Evol Microbiol 50:1279–1285 [CrossRef]
    [Google Scholar]
  33. Stackebrandt E., Koch C., Gvozdiak O., Schumann P. 1995; Taxonomic dissection of the genus Micrococcus : Kocuria gen.nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692 [CrossRef]
    [Google Scholar]
  34. Sutcliffe I. C. 2000; Characterisation of a lipomannan lipoglycan from the mycolic acid containing actinomycete Dietzia maris . Antonie van Leeuwenhoek 78:195–201 [CrossRef]
    [Google Scholar]
  35. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  36. Uchida K., Kudo T., Suzuki K. I., Nakase T. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56 [CrossRef]
    [Google Scholar]
  37. Vickers J. C., Williams S. T., Ross G. W. 1984; A taxonomic approach to selective isolation of streptomycetes from soil. In Biological, Biochemical and Biomedical Aspects of Actinomycetes pp  553–561 Edited by Ortiz-Ortiz L., Bojalil L. F., Yakoleff V. Orlando: Academic Press;
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64250-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64250-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error