1887

Abstract

Two novel facultatively anaerobic bacterial strains, BL-34 and BL-35, isolated from groundwater contaminated by a mixture of chlorosolvents were characterized using a polyphasic approach. The two strains exhibited essentially identical taxonomic features except for a vitamin B requirement by strain BL-35 for optimal growth. Phylogenetically, the isolates were affiliated with members of the family and were placed in a phylogenetic branch adjacent to, but distinct from, those of the genera , , , and . The cells of the novel strains were Gram-positive, non-motile, non-spore-forming pleomorphic rods. They produced catalase but not oxidase, and nitrate reduction did not occur in peptone/yeast extract/glucose medium. Propionate and acetate were the predominant products of glucose fermentation. Fermentation occurred in the presence of 1,2-dichloroethane and 1,1,2-trichloroethane at concentrations up to at least 9.8 mM. The genomic DNA G+C content was 67.5–67.9 mol%. Menaquinone MK-9(H) was the predominant respiratory quinone and -diaminopimelic acid was present in the cell-wall peptidoglycan layer. The major cellular fatty acids were C and anteiso-C. On the basis of the results obtained in this study, strains BL-34 and BL-35 should be classified within a novel taxon, for which the name gen. nov., sp. nov. is proposed. The type strain of is BL-34 (=LMG 23248=NRRL B-41418). An additional strain, BL-35 (=LMG 23249=NRRL B-41419), was also characterized.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64317-0
2006-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/8/1977.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64317-0&mimeType=html&fmt=ahah

References

  1. Akasaka H., Izawa T., Ueki K., Ueki A. 2003; Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43:149–161 [CrossRef]
    [Google Scholar]
  2. Clement T. P., Truex M. J., Lee P. 2002; A case study for demonstrating the application of U.S. EPA's monitored natural attenuation screening protocol at a hazardous waste site. J Contam Hydrol 59:133–162 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Nikolaitchouk N., Falsen E. 2000; Luteococcus peritonei sp. nov., isolated from the human peritoneum. Int J Syst Evol Microbiol 50:179–181 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Hutson R. A., Nikolaitchouk N., Nyberg A., Falsen E. 2003; Lueteococcus sanguinis sp. nov., isolated from human blood. Int J Syst Evol Microbiol 53:1889–1891 [CrossRef]
    [Google Scholar]
  5. Cummins C. S., Johnson J. L. 1986; Genus I. Propionibacterium Orla-Jensen 1909, 337AL . In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1346–1353 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  6. Cummins C. S., Moss C. W. 1990; Fatty acid composition of Propionibacterium propionicus ( Arachnia propionica . Int J Syst Bacteriol 40:307–308 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 2004 phylip (phylogeny inference package), version 3.62. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  8. Guckert J. B., Antworth C. P., Nichols P. D., White D. C. 1985; Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158 [CrossRef]
    [Google Scholar]
  9. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kusano K., Yamada H., Niwa M., Yamasato K. 1997; Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant ω -cyclohexyl fatty acid-containing Propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 47:825–831 [CrossRef]
    [Google Scholar]
  12. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Rees G. N. 1999; Tessaracoccus bendigoensis gen. nov., sp. nov. a Gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 49:459–468 [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  14. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [CrossRef]
    [Google Scholar]
  15. Pitcher D. G., Collins M. D. 1991; Phylogenetic analysis of some ll-diaminopimelic acid-containing coryneform bacteria from human skin: description of Propionibacterium innocuum sp. nov. FEMS Microbiol Lett 84:295–300
    [Google Scholar]
  16. Rainey F. A., Ward-Rainey N., Kroppenstedt E., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  17. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of α , ϵ -diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  18. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  19. Schumann P., Prauser H., Rainey F. A., Stackebrandt E., Hirsch P. 1997; Friedmanniella antarctica gen. nov., sp. nov. an ll-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Bacteriol 47:278–283 [CrossRef]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp  409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Stackebrandt E., Schumann P., Schaal K. P., Weiss N. 2002; Propionimicrobium gen. nov., a new genus to accommodate Propionibacterium lymphophilum (Torrey 1916) Johnson and Cummins 1972, 1057AL as Propionimicrobium lymphophilum comb. nov. Int J Syst Evol Microbiol 52:1925–1927 [CrossRef]
    [Google Scholar]
  22. Strunk O., Ludwig W. 1995 arb – a software environment for sequence data Department of Microbiology, Technical University of Munich; Munich, Germany:
    [Google Scholar]
  23. Sung Y., Ritalahti K. M., Sanford R. A., Urbance J. W., Flynn S. J., Tiedje J. M., Löffler F. E. 2003; Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganesis sp. nov. Appl Environ Microbiol 69:2964–2974 [CrossRef]
    [Google Scholar]
  24. Tamura T., Takeuchi M., Yokota A. 1994; Luteococcus japonicus gen nov., sp. nov a new gram-positive coccus with ll-diaminopimelic acid in the cell wall. Int J Syst Bacteriol 44348–356 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  26. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  27. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  28. US Environmental Protection Agency 2005; Petro-Processors of Louisiana, Inc. Fact Sheet . pp  1–6 Washington, DC: US Environmental Protection Agency;
    [Google Scholar]
  29. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62 [CrossRef]
    [Google Scholar]
  30. Yokota A., Tamura T., Takeuchi M., Weiss N., Stackebrandt E. 1994; Transfer of Propionibacterium innocuum Pitcher and Collins 1991 to Propioniferax gen. nov. as Propioniferax innocua comb. nov. Int J Syst Bacteriol 44:579–582 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64317-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64317-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error