1887

Abstract

Multilocus sequence analysis (MLSA) was performed on representatives of (including species previously assigned to the genus ) and related taxa. Neighbour-joining (NJ), maximum-parsimony (MP) and maximum-likelihood (ML) phylogenies of , , , , and 16S rRNA genes were compared. The data confirm that the potential for discrimination of species is greater using MLSA of housekeeping genes than 16S rRNA genes. In incongruence-length difference tests, the 16S rRNA gene was found to be significantly incongruent with the other genes, indicating that this gene should not be used as a single indicator of relatedness in this group. Significant congruence was detected for , and . Analyses of concatenated sequences of , and genes yielded very similar NJ, MP and ML trees, with high bootstrap support. In addition, analysis of a concatenation of all six genes essentially produced the same result, levelling out potentially conflicting phylogenetic signals. This new evidence supports the proposal to unite and in a single genus. Support for an alternative solution preserving the two genera is less strong. In view of the opinions expressed by the Judicial Commission, the name of the genus should be , as proposed by Young [ Young, J. M. (2003) . , 2107–2110]. Data obtained previously and these new data indicate that and ‘’ are not heterotypic synonyms, but represent separate species. However, transfer to the genus is not possible at present because the species name is the subject of a pending Request for an Opinion, which would affect whether a novel species in the genus or a new combination based on a basonym would be created.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64344-0
2007-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/3/489.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64344-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Drancourt M. 2004; Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65 , sodA , recA and rpoB gene sequencing. Int J Syst Evol Microbiol 54:2095–2105 [CrossRef]
    [Google Scholar]
  2. Baele M., Baele P., Vaneechoutte M., Storms V., Butaye P., Devriese L. A., Verschraegen G., Gillis M., Haesebrouck F. 2000; Application of tRNA intergenic spacer PCR for identification of Enterococcus species. J Clin Microbiol 38:4201–4207
    [Google Scholar]
  3. Balkwill D. L. 2005; Genus VI. Ensifer Casida 1982, 343VP. In Bergey's Manual of Systematic Bacteriology . , 2nd edn. vol. 2, part C pp  354–358 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. NY: Springer;
  4. Barrett M., Donoghue M. J., Sober E. 1991; Against consensus. Syst Zool 40:486–493 [CrossRef]
    [Google Scholar]
  5. Brenner D. J., Staley J. T., Krieg N. R. 2001; Classification of procaryotic organisms and the concept of bacterial speciation. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  27–31 Edited by Boone D. R., Castenholz R. W., Garrity G. M. NY: Springer;
    [Google Scholar]
  6. Broughton W. J. 2003; Roses by other names: taxonomy of the Rhizobiaceae . J Bacteriol 185:2975–2979 [CrossRef]
    [Google Scholar]
  7. Bull J. J., Huelsenbeck J., Cunningham C. W., Swofford D. L., Waddell P. J. 1993; Partitioning and combining data in phylogenetic analyses. Syst Biol 42:384–397 [CrossRef]
    [Google Scholar]
  8. Casida L. E. Jr 1982; Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32:339–345 [CrossRef]
    [Google Scholar]
  9. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397 [CrossRef]
    [Google Scholar]
  10. Christensen H., Kuhnert P., Olsen J. E., Bisgaard M. 2004; Comparative phylogenies of the housekeeping genes atpD , infB and rpoB and the 16S rRNA gene within the Pasteurellaceae . Int J Syst Evol Microbiol 54:1601–1609 [CrossRef]
    [Google Scholar]
  11. Coenye T., Gevers D., Van de Peer Y., Vandamme P., Swings J. 2005; Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167
    [Google Scholar]
  12. de Lajudie P., Willems A., Pot B., Dewettinck D., Maestrojuan G., Neyra M., Collins M. D., Dreyfus B., Kersters K., Gillis M. 1994; Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov.. Int J Syst Bacteriol 44:715–733 [CrossRef]
    [Google Scholar]
  13. de Lajudie P., Fulele-Laurent E., Willems A., Torck U., Coopman R., Collins M. D., Kersters K., Dreyfus B., Gillis M. 1998; Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290 [CrossRef]
    [Google Scholar]
  14. DelVecchio V. G., Kapatral V., Redkar R. J., Patra G., Mujer C., Los T., Ivanova N., Anderson I., Bhattacharyya A. other authors 2002; The genome sequence of the facultative intracellular pathogen Brucella melitensis . Proc Natl Acad Sci U S A 99:443–448 [CrossRef]
    [Google Scholar]
  15. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov. sp. nov. a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata . Int J Syst Bacteriol 38:89–98 [CrossRef]
    [Google Scholar]
  16. Eardly B. D., Wang F.-S., Van Berkum P. 1996; Corresponding 16S rRNA segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186:69–74 [CrossRef]
    [Google Scholar]
  17. Eardly B. D., Nour S. M., van Berkum P., Selander R. K. 2005; Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae . Appl Environ Microbiol 71:1328–1335 [CrossRef]
    [Google Scholar]
  18. Eisen J. A. 1995; The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123
    [Google Scholar]
  19. Euzéby J. P., Tindall B. J. 2004; Status of strains that contravene Rules 27(3) and 30 of the Bacteriological Code. Request for an Opinion. Int J Syst Evol Microbiol 54:293–301 [CrossRef]
    [Google Scholar]
  20. Farrand S. K., van Berkum P. B., Oger P. 2003; Agrobacterium is a definable genus of the family Rhizobiaceae . Int J Syst Evol Microbiol 53:1681–1687 [CrossRef]
    [Google Scholar]
  21. Farris J. S. M., Källersjö M., Kluge A. G., Bult C. 1994; Testing significance of incongruence. Cladistics 10:315–319 [CrossRef]
    [Google Scholar]
  22. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A. other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science 293:668–672 [CrossRef]
    [Google Scholar]
  23. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P. W. 2001; Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048 [CrossRef]
    [Google Scholar]
  24. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P. other authors 2005; Opinion: Re-evaluating prokaryotic species. Nature Rev Microbiol 3:733–739 [CrossRef]
    [Google Scholar]
  25. Goloboff P. A. 1993; Estimating character weights during tree search. Cladistics 9:83–91 [CrossRef]
    [Google Scholar]
  26. Goodner B., Hinkle G., Gattung S., Miller N., Blanchard M., Qurollo B., Goldman B. S., Cao Y., Askenazi M. other authors 2001; Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328 [CrossRef]
    [Google Scholar]
  27. Hernández-Lucas I., Rogel-Hernández M. A., Segovia L., Rojas-Jiménez K., Martínez-Romero E. 2004; Phylogenetic relationships of rhizobia based on citrate synthase gene sequences. Syst Appl Microbiol 27:703–706 [CrossRef]
    [Google Scholar]
  28. Holmes D. E., Nevin K. P., Lovley D. R. 2004; Comparison of 16S rRNA, nifD , recA , gyrB , rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599 [CrossRef]
    [Google Scholar]
  29. Jarvis B. D. W., van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C., Gillis M. 1997; Transfer of Rhizobium loti , Rhizobium huakuii , Rhizobium ciceri , Rhizobium mediterraneum , and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898 [CrossRef]
    [Google Scholar]
  30. Jordan D. C. 1982; Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139 [CrossRef]
    [Google Scholar]
  31. Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S., Watanabe A., Idesawa K., Ishikawa A. other authors 2000; Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti . DNA Res 7:331–338 [CrossRef]
    [Google Scholar]
  32. Kaneko T., Nakamura Y., Sato S., Minamisawa K., Uchiumi T., Sasamoto S., Watanabe A., Idesawa K., Iriguchi M. other authors 2002; Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197 [CrossRef]
    [Google Scholar]
  33. Kluge A. G. 1989; A concern for evidence and phylogenetic hypothesis relationships among Epicrates (Boidae, Serpentes).. Zyst Zool 38:7–25
    [Google Scholar]
  34. Konstantinidis K. T., Tiedje J. M. 2005; Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264 [CrossRef]
    [Google Scholar]
  35. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. (editors) 1992; International Code of Nomenclature of Bacteria (1990 Revision) Bacteriological Code . Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Lindström K., Martínez-Romero M. E. 2002; International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium . Minutes of the meeting 4 July 2001; Hamilton, Canada. Int J Syst Evol Microbiol 52:2337 [CrossRef]
    [Google Scholar]
  37. Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K. other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145 [CrossRef]
    [Google Scholar]
  38. Miyamoto M. M., Fitch W. M. 1995; Testing species phylogenies and phylogenetic methods with congruence. Syst Biol 44:64–76 [CrossRef]
    [Google Scholar]
  39. Mollet C., Drancourt M., Raoult D. 1998; Determination of Coxiella burnetii rpoB sequence and its use for phylogenetic analysis. Gene 207:97–103 [CrossRef]
    [Google Scholar]
  40. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J. 2005; Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150 [CrossRef]
    [Google Scholar]
  41. Nick G., de Lajudie P., Eardly B. D., Suomalainen S., Paulin L., Zhang X., Gillis M., Lindström K. 1999; Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368 [CrossRef]
    [Google Scholar]
  42. Nierman W. C., Feldblyum T. V., Laub M. T., Paulsen I. T., Nelson K. E., Eisen J., Heidelberg J. F., Alley M. R. K., Ohta N. other authors 2001; Complete genome sequence of Caulobacter crescentus . Proc Natl Acad Sci U S A 98:4136–4141 [CrossRef]
    [Google Scholar]
  43. Olsen G. J., Woese C. R. 1993; Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123
    [Google Scholar]
  44. Posada D., Buckley T. R. 2004; Model selection and model averaging in phylogenetics: advantages of the Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808 [CrossRef]
    [Google Scholar]
  45. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  46. Rome S., Fernandez M. P., Brunel B., Normand P., Cleyet-Marel J.-C. 1996; Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980 [CrossRef]
    [Google Scholar]
  47. Ronner S., Liesack W., Wolters J., Stackebrandt E. 1991; Cloning and sequencing of a large fragment of the AtpD-gene of Pirellula marina : a contribution to the phylogeny of Planctomycetales . Endocytob Cell Res 7:219–229
    [Google Scholar]
  48. Sawada H., Kuykendall L. D., Young J. M. 2003; Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179 [CrossRef]
    [Google Scholar]
  49. Shimodaira H., Hasegawa M. 1999; Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116 [CrossRef]
    [Google Scholar]
  50. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  51. Stepkowski T., Czaplinska M., Miedzinska K., Moulin L. 2003; The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria . Syst Appl Microbiol 26:483–494 [CrossRef]
    [Google Scholar]
  52. Sullivan J. T., Eardly B. D., van Berkum P., Ronson C. W. 1996; Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus . Appl Environ Microbiol 62:2818–2825
    [Google Scholar]
  53. Swofford D. L. 2002 paup*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  54. Terefework Z., Nick G., Suomalainen S., Paulin L., Lindström K. 1998; Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria. Int J Syst Evol Microbiol 48:349–356
    [Google Scholar]
  55. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  56. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J. 2005; Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115 [CrossRef]
    [Google Scholar]
  57. Toledo I., Lloret L., Martínez-Romero E. 2003; Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64 [CrossRef]
    [Google Scholar]
  58. Turner S. L., Young J. P. W. 2000; The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319 [CrossRef]
    [Google Scholar]
  59. van Berkum P., Terefework Z., Paulin L., Suomalainen S., Lindström K., Eardly B. D. 2003; Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998 [CrossRef]
    [Google Scholar]
  60. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  61. Viale A. M., Arakaki A. K., Soncini F. C., Ferreyra R. G. 1994; Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int J Syst Bacteriol 44:527–533 [CrossRef]
    [Google Scholar]
  62. Vinuesa P., Silva C., Lorite M. J., Izaguirre-Mayoral M. L., Bedmar E. J., Martínez-Romero E. 2005; Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs , atpD , recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716 [CrossRef]
    [Google Scholar]
  63. Wang E. T., Tan Z. Y., Willems A., Fernández-López M., Reinhold-Hurek B., Martínez-Romero E. 2002; Sinorhizobium morelense sp. nov., a Leucaena leucocephala -associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693 [CrossRef]
    [Google Scholar]
  64. Wei G. H., Wang E. T., Tan Z. Y., Zhu M. E., Chen W. X. 2002; Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea . Int J Syst Evol Microbiol 52:2231–2239 [CrossRef]
    [Google Scholar]
  65. Wernegreen J. J., Riley M. A. 1999; Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113 [CrossRef]
    [Google Scholar]
  66. Wertz J. E., Goldstone C., Gordon D. M., Riley M. A. 2003; A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16:1236–1248 [CrossRef]
    [Google Scholar]
  67. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43:305–313 [CrossRef]
    [Google Scholar]
  68. Willems A., Fernández-López M., Muñoz-Adelantado E., Goris J., De Vos P., Martínez-Romero E., Toro N., Gillis M. 2003; Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an opinion. . Int J Syst Evol Microbiol 53:1207–1217 [CrossRef]
    [Google Scholar]
  69. Wood D. W., Setubal J. C., Kaul R., Monks D. E., Kitajima J. P., Okura V. K., Zhou Y., Chen L., Wood G. E. other authors 2001; The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323 [CrossRef]
    [Google Scholar]
  70. Xia X., Xie Z. 2001; dambe: software package for data analysis in molecular biology and evolution. J Hered 92:371–373 [CrossRef]
    [Google Scholar]
  71. Xia X., Xie Z., Salemi M., Chen L., Wang Y. 2003; An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7 [CrossRef]
    [Google Scholar]
  72. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120 [CrossRef]
    [Google Scholar]
  73. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  74. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S. 2000; Phylogeny of the genus Pseudomonas : intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394
    [Google Scholar]
  75. Young J. M. 2003; The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al . 1988, and Sinorhizobium morelense Wang et al . 2002 is a later synonym of Ensifer adhaerens Casida; 1982; Is the combination ‘ Sinorhizobium adhaerens ’; (Casida 1982; Willems et al . 2003 legitimate? Request for an Opinion. Int J Syst Evol Microbiol 53:2107–2110 [CrossRef]
    [Google Scholar]
  76. Young J. M., Kuykendall L. D., Martínez-Romero E., Kerr A., Sawada H. 2001; A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al . 1998 as new combinations: Rhizobium radiobacter , R. rhizogenes , R. rubi , R.undicola and R. vitis . Int J Syst Evol Microbiol 51:89–103
    [Google Scholar]
  77. Young J. P. W., Haukka K. E. 1996; Diversity and phylogeny of rhizobia. New Phytol 133:87–94 [CrossRef]
    [Google Scholar]
  78. Zakhia F., de Lajudie P. 2001; Taxonomy of rhizobia. Agronomie 21:569–576 [CrossRef]
    [Google Scholar]
  79. Zeigler D. R. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64344-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64344-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error