1887

Abstract

A marine bacterium, strain Pol012, was isolated from the Mediterranean sponge and subsequently characterized as belonging to subphylum 1 of the phylum ‘’. Strain Pol012 was non-motile, Gram-negative, coccoid or rod-shaped and red in colour. The menaquinones MK-8 and MK-9 were detected. The G+C content of the genomic DNA was 50.9 mol%. Growth was possible at temperatures between 8 and 30 °C and at pH values between 6.8 and 8.2. The closest cultured relative of strain Pol012 was (83 % sequence similarity), while the closest environmental 16S rRNA gene sequence was the marine clone Arctic96BD-2 (95 % sequence similarity). Strain Pol012 is the first marine pure-culture representative of ‘’ subphylum 1 and represents a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is Pol012 (=DSM 177716=CIP 108984).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64360-0
2006-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/9/2119.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64360-0&mimeType=html&fmt=ahah

References

  1. Alain K., Olagnon M., Desbruyères D., Pagé A., Barbier G., Juniper S. K., Quérellou J., Cambon-Bonavita M.-A. 2002; Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis . FEMS Microbiol Ecol 42:463–476 [CrossRef]
    [Google Scholar]
  2. Bano N., Hollibaugh J. T. 2002; Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68:505–518 [CrossRef]
    [Google Scholar]
  3. Bowman J. P., McCuaig R. D. 2003; Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483 [CrossRef]
    [Google Scholar]
  4. Bowman J. P., Nowak B. 2004; Salmonid gill bacteria and their relationship to amoebic gill disease. J Fish Dis 27:483–492 [CrossRef]
    [Google Scholar]
  5. Bowman J. P., Rea S. M., McCammon S. A., McMeekin T. A. 2000; Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hilds, Eastern Antarctica. Environ Microbiol 2:227–237 [CrossRef]
    [Google Scholar]
  6. Chin K.-J., Liesack W., Janssen P. H. 2001; Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘ Verrucomicrobia ’ isolated from rice paddy soil. Int J Syst Evol Microbiol 51:1965–1968 [CrossRef]
    [Google Scholar]
  7. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68 [CrossRef]
    [Google Scholar]
  8. Derrien M., Vaughan E. E., Plugge C. M., de Vos W. M. 2004; Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476 [CrossRef]
    [Google Scholar]
  9. Fieseler L., Horn M., Wagner M., Hentschel U. 2004; Discovery of the novel candidate phylum ‘ Poribacteria ’ in marine sponges. Appl Environ Microbiol 70:3724–3732 [CrossRef]
    [Google Scholar]
  10. Harris J. K., Kelley S. T., Pace N. R. 2004; New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70:845–849 [CrossRef]
    [Google Scholar]
  11. Hedlund B. P., Gosink J. J., Staley J. T. 1996; Phylogeny of Prosthecobacter , the fusiform caulobacters: members of a recently discovered division of the Bacteria . Int J Syst Bacteriol 46:960–966 [CrossRef]
    [Google Scholar]
  12. Hedlund B. P., Gosink J. J., Staley J. T. 1997; Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter . Antonie van Leeuwenhoek 72:29–38 [CrossRef]
    [Google Scholar]
  13. Hentschel U., Schmid M., Wagner M., Fieseler L., Gernert C., Hacker J. 2001; Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the mediterranean sponges Aplysina aerophoba and A. cavernicola . FEMS Microbiol Ecol 35:305–312 [CrossRef]
    [Google Scholar]
  14. Hentschel U., Hopke J., Horn M., Friedrich A. B., Wagner M., Moore B. S. 2002; Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440 [CrossRef]
    [Google Scholar]
  15. Hentschel U., Usher K. M., Taylor M. W. 2006; Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177 [CrossRef]
    [Google Scholar]
  16. Hill R. T. 2004; Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In Microbial Diversity and Bioprospecting pp  177–190 Edited by Bull A. T. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Huber T., Faulkner G., Hugenholtz P. 2004; Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319 [CrossRef]
    [Google Scholar]
  18. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  19. Joseph S. J., Hugenholtz P., Sangwan P., Osborne C. A., Janssen P. H. 2003; Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:2391–2396
    [Google Scholar]
  20. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  21. Lyman J., Fleming R. H. 1940; Composition of seawater. J Mar Res 3:134–146
    [Google Scholar]
  22. Madrid V. M., Taylor G. T., Scranton M. I., Christoserdov A. Y. 2001; Phylogenetic diversity of bacterial and archeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol 67:1663–1674 [CrossRef]
    [Google Scholar]
  23. Mincer T. J., Jensen P. R., Kauffman C. A., Fenical W. 2002; Widespread and persistent populations of a major new actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011 [CrossRef]
    [Google Scholar]
  24. Montalvo N. F., Mohamed N. M., Enticknap J. J., Hill R. T. 2005; Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek 87:29–36 [CrossRef]
    [Google Scholar]
  25. Oppenheimer C. H., ZoBell C. E. 1952; The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res 11:10–18
    [Google Scholar]
  26. O'Sullivan L. A., Fuller K. E., Thomas E. M., Turley C. M., Fry J. C., Weightman A. J. 2004; Distribution and culturability of the uncultivated ‘AGG58 cluster’ of the Bacteroidetes phylum in aquatic environments. FEMS Microbiol Ecol 47:359–370 [CrossRef]
    [Google Scholar]
  27. Petroni G., Spring S., Schleifer K.-H., Verni F., Rosati G. 2000; Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia . Proc Natl Acad Sci U S A 97:1813–1817 [CrossRef]
    [Google Scholar]
  28. Pimentel-Elardo S., Wehrl M., Friedrich A. B., Jensen P. J., Hentschel U. 2003; Isolation of planctomycetes from Aplysina sponges. Aquat Microb Ecol 33:239–245 [CrossRef]
    [Google Scholar]
  29. Powell S. M., Bowman J. P., Snape I., Stark J. S. 2003; Microbial community variation in pristine and polluted coastal Antarctic sediments. FEMS Microbiol Ecol 45:135–145 [CrossRef]
    [Google Scholar]
  30. Sakai T., Ishizuka K., Kato I. 2003; Isolation and characterization of a fucoidan-degrading marine bacterium. Mar Biotechnol 5:409–416 [CrossRef]
    [Google Scholar]
  31. Sangwan P., Chen X., Hugenholtz P., Janssen P. H. 2004; Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia . Appl Environ Microbiol 70:5875–5881 [CrossRef]
    [Google Scholar]
  32. Schäfer H., Servais P., Muyzer G. 2000; Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch Microbiol 173:138–145 [CrossRef]
    [Google Scholar]
  33. Scheuermayer M., Pimentel-Elardo S., Fieseler L., Grozdanov L., Hentschel U. 2006; Microorganisms of sponges: phylogenetic diversity and biotechnological potential. In Frontiers in Marine Biotechnology pp  289–312 Edited by Proksch P., Müller W. E. G. Norwich: Horizon Bioscience;
    [Google Scholar]
  34. Schlesner H. 1987; Verrucomicrobium spinosum gen. nov., sp. nov., a fimbriated prosthecate bacterium. Syst Appl Microbiol 10:54–56 [CrossRef]
    [Google Scholar]
  35. Shieh W. Y., Jean W. D. 1998; Alterococcus agarolyticus , gen. nov., sp. nov., a halophilic thermophilic bacterium capable of agar degradation. Can J Microbiol 44:637–645 [CrossRef]
    [Google Scholar]
  36. Sittig M., Schlesner H. 1993; Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst Appl Microbiol 16:92–103 [CrossRef]
    [Google Scholar]
  37. Stevenson B. S., Eichorst S. A., Wertz J. T., Schmidt T. M., Breznak J. A. 2004; New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755 [CrossRef]
    [Google Scholar]
  38. Strunk O., Gross O., Reichel B. 10 other authors 2000 arb: a software environment for sequence data Department of Microbiology, Technische Universität Munich; Germany: http://www.mikro.biologie.tu-muenchen.de
    [Google Scholar]
  39. Suzuki M. T., Béjà O., Taylor L. T., DeLong E. F. 2001; Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ Microbiol 3:323–331 [CrossRef]
    [Google Scholar]
  40. Vandekerckhove T. T. M., Willems A., Gillis M., Coomans A. 2000; Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum -group species (Nematoda, Longidoridae). Int J Syst Evol Microbiol 50:2197–2205 [CrossRef]
    [Google Scholar]
  41. Weidner S., Arnold W., Stackebrandt E., Pühler A. 2000; Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Microb Ecol 39:22–31 [CrossRef]
    [Google Scholar]
  42. Zoetendal E. G., Plugge C. M., Akkermans A. D. L., de Vos W. M. 2003; Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol 53:211–215 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64360-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64360-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error