1887

Abstract

Strain TR53, a Gram-negative, non-motile, non-spore-forming and strictly aerobic coccobacillus, isolated from the drinking water distribution system of Seville, Spain, was subjected to polyphasic taxonomic analysis using a combination of phenotypic, genotypic and phylogenetic features. Phylogenetic analysis of 16S rRNA gene sequences showed that strain TR53 had highest similarity to members of the genus , with sequence similarity values between 95.7 % (to genomospecies 5 strain ATCC 49960) and 94.0 % (to subsp. ATCC 49956). On the basis of its phenotypic characteristics, 16S rRNA gene sequence data and DNA G+C content (68.6 mol%), strain TR53 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is TR53 (=CECT 7131=JCM 13556).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64379-0
2006-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2291.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64379-0&mimeType=html&fmt=ahah

References

  1. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496
    [Google Scholar]
  2. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466
    [Google Scholar]
  3. Cohen M. F., Han X. Y., Mazzola M. 2004; Molecular and physiological comparison of Azospirillum spp. isolated from Rhizoctonia solani mycelia, wheat rhizosphere, and human skin wounds. Can J Microbiol 50:291–297 [CrossRef]
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  5. Doronina N. V., Trotsenko Y. A., Krausova V. I., Boulygina E. S., Tourova T. P. 1998; Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. Int J Syst Bacteriol 48:1313–1321 [CrossRef]
    [Google Scholar]
  6. Gallego V., García M. T., Ventosa A. 2005a; Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 55:281–287 [CrossRef]
    [Google Scholar]
  7. Gallego V., García M. T., Ventosa A. 2005b; Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment. Int J Syst Evol Microbiol 55:1429–1433 [CrossRef]
    [Google Scholar]
  8. Gallego V., García M. T., Ventosa A. 2005c; Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 55:2333–2337 [CrossRef]
    [Google Scholar]
  9. Gallego V., García M. T., Ventosa A. 2006; Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56:339–342 [CrossRef]
    [Google Scholar]
  10. Han X. Y., Pham A. S., Tarrand J. J., Rolston K. V., Helsel L. O., Levett P. N. 2003; Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp.nov. and Roseomonasgilardii subsp. rosea subsp. nov. Am J Clin Pathol 120: 256–264 [CrossRef]
    [Google Scholar]
  11. Jiang C.-Y., Dai X., Wang B.-J., Zhou Y.-G., Liu S.-J. 2006; Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 56:25–28 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  13. Kersters K., Hinz K.-H., Hertle A., Segers P., Lievens A., Siegmann O., De Ley J. 1984; Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int J Syst Bacteriol 34:56–70 [CrossRef]
    [Google Scholar]
  14. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178: 703
    [Google Scholar]
  15. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger N., Neumaier J., Bachleitner M., Schleifer K.-H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 4:109–118
    [Google Scholar]
  19. McLean T. W., Rouster-Stevens K., Woods C. R., Shetty A. K. 2006; Catheter-related bacteremia due to Roseomonas species in pediatric hematology/oncology patients. Pediatr Blood Cancer 46:514–516 [CrossRef]
    [Google Scholar]
  20. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui , Volcaniella eurihalina , and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45:712–716 [CrossRef]
    [Google Scholar]
  21. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  22. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists , 2nd edn. pp  217–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  23. Rihs J. D., Brenner D. J., Weaver R. E., Steigerwalt A. G., Hollis D. G., Yu V. L. 1993; Roseomonas , a new genus associated with bacteremia and other human infections. J Clin Microbiol 31:3275–3283
    [Google Scholar]
  24. September S. M., Brozel V. S., Venter S. N. 2004; Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl Environ Microbiol 70:7571–7573 [CrossRef]
    [Google Scholar]
  25. Sfanos K., Harmody D., Dang P., Ledger A., Pomponi S., McCarthy P., Lopez J. 2005; A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28:242–264 [CrossRef]
    [Google Scholar]
  26. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria , 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  27. Ventosa A., Gutierrez M. C., Kamekura M., Dyall-Smith M. L. 1999; Proposal to transfer Halococcus turkmenicus , Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49:131–136 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64379-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64379-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error