1887

Abstract

A strictly anaerobic, halophilic, motile, endospore-forming, rod-shaped bacterium, designated strain HY-45-18, was isolated from a sediment sample of a tidal flat in Korea. The isolate produced butyric acid, propionic acid, glycerol and H as fermentation end products from glucose. Strain HY-45-18 is halophilic as it was unable to grow in the absence of sea salts. A 16S rRNA gene sequence analysis clearly indicated that the tidal flat isolate is a member of cluster I of the order , which contains the type species of , . The closest phylogenetic neighbour of strain HY-45-18 was KCTC 5146 (96.5 % 16S rRNA gene sequence similarity). Several phenotypic characteristics can be readily used to differentiate the isolate from phylogenetically related clostridia. Therefore, strain HY-45-18 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HY-45-18 (=IMSNU 40129=KCTC 5147=JCM 13194).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64428-0
2007-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1315.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64428-0&mimeType=html&fmt=ahah

References

  1. Choi D. H., Kim Y. G., Hwang C. Y., Yi H., Chun J., Cho B. C. 2006; Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 56:635–640 [CrossRef]
    [Google Scholar]
  2. Chun J. S., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [CrossRef]
    [Google Scholar]
  3. Chun J., Bae K. S., Moon E. Y., Jung S. O., Lee H. K., Kim S. J. 2000; Nocardiopsis kunsanensis sp nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  8. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284 [CrossRef]
    [Google Scholar]
  9. Hernandez-Eugenio G., Fardeau M. L., Cayol J. L. A., Patel B. K. C., Thomas P., Macarie H., Garcia J. L., Ollivier B. 2002; Clostridium thiosulfatireducens sp. nov., a proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 52:1461–1468 [CrossRef]
    [Google Scholar]
  10. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J. 2005; jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21:3171–3173 [CrossRef]
    [Google Scholar]
  11. Johnson M. J., Thatcher E., Cox M. E. 1995; Techniques for controlling variability in gram staining of obligate anaerobes. J Clin Microbiol 33:755–758
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kim B. S., Oh H. M., Kang H., Park S. S., Chun J. 2004; Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol Biotechnol 14:205–211
    [Google Scholar]
  14. Kim B. S., Oh H. M., Kang H., Chun J. 2005; Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol 43:144–151
    [Google Scholar]
  15. Kim S., Jeong H., Kim S., Chun J. 2006; Clostridium ganghwense sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 56:691–693 [CrossRef]
    [Google Scholar]
  16. Mountfort D. O., Rainey F. A., Burghardt J., Stackebrandt E. 1994; Clostridium grantii sp. nov., a new obligately anaerobic, alginolytic bacterium isolated from mullet gut. Arch Microbiol 162:173–179 [CrossRef]
    [Google Scholar]
  17. Park Y. D., Baik K. S., Yi H., Bae K. S., Chun J. 2005; Pseudoalteromonas byunsanensis sp. nov., isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 55:2519–2523 [CrossRef]
    [Google Scholar]
  18. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Swofford D. L. 1998 paup*: phylogenetic analysis using parsimony (* and other methods), version 4.0 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  21. Yi H., Chun J. 2006; Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 44:171–176
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64428-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64428-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error