1887

Abstract

A thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterium was isolated from an underground mine in a geothermally active area in Japan. Cells of this strain, designated RL50JIII, were rod-shaped and motile. The temperature range for growth was 50–72 °C (optimum growth at 61–66 °C) and the pH range was 6.4–7.8 (optimum at pH 7.2–7.4). Strain RL50JIII tolerated up to 1.5 % NaCl, but optimum growth occurred in the presence of 0–1 % NaCl. Electron acceptors utilized were sulfate, sulfite, thiosulfate and elemental sulfur. Electron donors utilized were H in the presence of CO, alanine, various carboxylic acids and alcohols. Fermentative growth occurred on lactate and pyruvate. The cell wall contained mesodiaminopimelic acid and the major respiratory isoprenoid quinone was menaquinone 7 (MK-7). Major whole-cell fatty acids were iso-C, iso-C DMA (dimethyl acetal), iso-C DMA and iso-C. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed 98.7 % similarity with DSM 14956. However, DNA–DNA hybridization experiments with , and and the G+C content of the DNA (54.4 mol%) allowed the differentiation of strain RL50JIII from the recognized species of the genus . Strain RL50JIII therefore represents a novel species, for which the name sp. nov. is proposed. The type strain is RL50JIII (=DSM 16057=JCM 13837).

Keyword(s): DMA, dimethyl acetal
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64439-0
2006-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/11/2603.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64439-0&mimeType=html&fmt=ahah

References

  1. Campbell L. L., Postgate J. R. 1965; Classification of spore-forming sulfate-reducing bacteria. Bacteriol Rev 29:359–363
    [Google Scholar]
  2. Cashion P., Hodler-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  4. Daumas S., Cord-Ruwisch R., Garcia J. L. 1988; Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek 54:165–178 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  7. Fardeau M.-L., Ollivier B., Patel B. K. C., Dwivedi P., Ragot M., Garcia J.-L. 1995; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp. nov. Int J Syst Bacteriol 45:218–221 [CrossRef]
    [Google Scholar]
  8. Goorissen H. P., Boschker H. T. S., Stams A. J. M., Hansen T. A. 2003; Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp. nov. Int J Syst Evol Microbiol 53:1223–1229 [CrossRef]
    [Google Scholar]
  9. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  10. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenesis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  11. Heimbrook M. E., Wang W. L. L., Campbell G. 1989; Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford-system 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 25:61–73
    [Google Scholar]
  14. Kaksonen A. H., Plumb J. J., Robertson W. J., Franzmann P. D., Gibson J. A. E., Puhakka J. A. 2004; Culturable diversity and community fatty acid profiling of sulfate-reducing fluidized-bed reactors treating acidic, metal-containing wastewater. Geomicrobiol J 21:469–480 [CrossRef]
    [Google Scholar]
  15. Kaksonen A. H., Plumb J. J., Robertson W. J., Spring S., Schumann P., Franzmann P. D., Puhakka J. A. 2006; Novel thermophilic sulfate-reducing bacteria from a geothermally active underground mine in Japan. Appl Environ Microbiol 72:3759–3762 [CrossRef]
    [Google Scholar]
  16. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  17. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics pp  173–179 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  18. Liu Y., Karnauchow T. M., Jarrell K. F., Balkwill D. L., Drake G. R., Ringelberg D., Clarno R., Boone D. R. 1997; Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov., from a hot spring. Int J Syst Bacteriol 47:615–621 [CrossRef]
    [Google Scholar]
  19. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum , sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16:244–251 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  22. Min H., Zinder S. H. 1990; Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp. nov. Arch Microbiol 153:399–404 [CrossRef]
    [Google Scholar]
  23. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S. 2003; Conexibacter woesei gen nov., sp. nov a novel representative of a deep evolutionary line of descent within the class Actinobacteria . Int J Syst Evol Microbiol 53569–576 [CrossRef]
    [Google Scholar]
  24. Nazina T. N., Ivanova A. E., Kanchaveli L. P., Rozanova E. P. 1989; A new sporeforming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology (English translation of Mikrobiologiia ) 57659–663
    [Google Scholar]
  25. Nazina T. N., Rozanova E. P., Belyakova E. V., Lysenko A. M., Poltaraus A. B., Tourova T. P., Osipov G. A., Belyaev S. S. 2005 Description of ‘ Desulfotomaculum nigrificans subsp. salinus ’ as a new species, Desulfotomaculum salinum sp. nov. Microbiology (English translation of Mikrobiologiia ) 74567–574 [CrossRef]
  26. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46:397–402 [CrossRef]
    [Google Scholar]
  27. Parshina S. N., Sipma J., Nakashimada Y., Henstra A. M., Smidt H., Lysenko A. M., Lens P. N. L., Lettinga G., Stams A. J. M. 2005; Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100 % CO. Int J Syst Evol Microbiol 55:2159–2165 [CrossRef]
    [Google Scholar]
  28. Pikuta E., Lysenko A., Suzina N., Osipov G., Kuznetsov B., Tourova T., Akimenko V., Laurinavichius K. 2000; Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33 [CrossRef]
    [Google Scholar]
  29. Plugge C. M., Balk M., Stams A. J. M. 2002; Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52:391–399
    [Google Scholar]
  30. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of α,ϵ -diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  31. Stookey L. L. 1970; Ferrozine – a new spectrophotometric reagent for iron. Anal Chem 42:779–781 [CrossRef]
    [Google Scholar]
  32. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  33. Tasaki M., Kamagata Y., Nakamura K., Mikami E. 1991; Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch Microbiol 155:348–352
    [Google Scholar]
  34. Vandieken V., Knoblauch C., Jorgensen B. B. 2006; Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Int J Syst Evol Microbiol 56:687–690 [CrossRef]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  36. Werkman C. H., Weaver H. J. 1927; Studies in the bacteriology of sulphur stinker spoilage of canned sweet corn. Iowa State Coll J Sci 2:57–67
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64439-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64439-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error