1887

Abstract

An aerobic, Gram-negative, yellow-pigmented, non-motile bacterium, designated strain KMM 3882, was isolated from a marine bivalve () collected from Peter the Great Bay, Sea of Japan, and was subjected to phenotypic and phylogenetic analyses. Strain KMM 3882 was found to exert a remarkable inhibitory activity against a number of Gram-positive micro-organisms. Phylogenetic analysis based on 16S rRNA gene sequences placed strain KMM 3882 within the genus , as an independent lineage adjacent to DS-4 and DSM 15761. Strain KMM 3882 showed the highest 16S rRNA gene sequence similarity to DS-4 (97.3 %); similarities of 96.5–96.7 % were obtained with DSM 13101, NBRC 15497, NBRC 15499, DSM 7225 and DSM 15761. Chemotaxonomically, strain KMM 3882 contained sphingoglycolipid, C and C as predominant fatty acids and 2-OH C as a major 2-hydroxy fatty acid, confirming the affiliation of strain KMM 3882 with the genus . On the basis of phylogenetic analysis, DNA–DNA hybridization and physiological and biochemical characterization, strain KMM 3882 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KMM 3882 (=An 18=NRIC 0685=JCM 14122=CIP 109223).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64441-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/358.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64441-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Balkwill D. L., Fredrickson J. K., Romine M. F. 2003 Sphingomonas and related genera. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community , 3rd edn, release 3.14. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer Inc;
    [Google Scholar]
  3. Berg G., Balin G. 1994; Bacterial antagonists to Verticillium dahliae Kleb. J Phytopathol 141:99–110 [CrossRef]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  5. Busse H.-J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov.,air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Hauser E., Kämpfer P. 2005; Description of two novel species, Sphingomonas abaci sp.nov. and Sphingomonas panni sp. nov.. Int J Syst Evol Microbiol 55:2565–2569 [CrossRef]
    [Google Scholar]
  7. Denner E. B. M., Paukner S., Kämpfer P., Moore E. R. B., Abraham W.-R., Busse H.-J., Wanner G., Lubitz W. 2001; Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841 [CrossRef]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1989; phylip – Phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of “ Pseudomonas azotocolligans ” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  12. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  14. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516 [CrossRef]
    [Google Scholar]
  15. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  16. Romanenko L. A., Uchino M., Mikhailov V. V., Zhukova N. V., Uchimura T. 2003; Marinomonas primoryensis sp. nov., a novel psychrophile isolated from coastal sea-ice in the Sea of Japan. Int J Syst Evol Microbiol 53:829–832 [CrossRef]
    [Google Scholar]
  17. Romanenko L. A., Uchino M., Falsen E., Lysenko A. M., Zhukova N. V., Mikhailov V. V. 2005; Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. J Gen Appl Microbiol 51:65–71 [CrossRef]
    [Google Scholar]
  18. Rowe N. J., Tunstall J., Galbraith L., Wilkinson S. G. 2000; Lipid composition and taxonomy of [ Pseudomonas ] echinoides : transfer to the genus Sphingomonas . Microbiology 146:3007–3012
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  21. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–655 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  23. Sugawara H., Tanaka N., Miyazaki S. 2003; An e-Workbench for the study of microbial diversity: the system design and basic functions. Microbiol Cult Coll 19:59–67
    [Google Scholar]
  24. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Xie C.-H., Yokota A. 2006; Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa . Int J Syst Evol Microbiol 56:889–893 [CrossRef]
    [Google Scholar]
  28. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  29. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al. , 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
  30. Yamaguchi T., Kobayashi Y., Adachi K., Imamura N. 2003; Argimicins B and C, new anti-cyanobacterial compounds produced by Sphingomonas sp. M-17. J Antibiot 56:655–657 [CrossRef]
    [Google Scholar]
  31. Yoon J.-H., Lee M.-H., Kang S.-J., Lee S.-Y., Oh T.-K. 2006; Sphingomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:2165–2169 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64441-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64441-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error