1887

Abstract

Two novel bacteria, strains TR7-09 and P2-12-1, were isolated from samples of compost and river sediment, respectively. The strains comprised Gram-negative, motile, non-spore-forming rods, produced creamy white colonies on R2A agar, contained Q-8 as the predominant ubiquinone, contained iso-15 : 0, iso-17 : 09 and iso-11 : 0 3-OH as the major fatty acids, and had polar lipid profiles consisting of phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and an unknown phospholipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strains were most closely related to DSM 13605, KCTC 12236 and LMG 568 (with 92.5, 92.0 and 92.0 % sequence similarity, respectively) and formed a separate lineage within the family The combined genotypic and phenotypic data supported the conclusion that the strains represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is TR7-09 (=KCTC 12666=DSM 18010).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64472-0
2007-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/8/1876.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64472-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Bates R. G., Bower V. E. 1956; Alkaline solutions for pH control. Anal Chem 28:1322–1324 [CrossRef]
    [Google Scholar]
  3. Bradbury J. F. 1984; Genus II. Xanthomonas Dowson 1939, 187AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp 199–210 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Busse H.-J., Kämpfer P., Moore E. R. B., Nuutinen J., Tsitko I. V., Denner E. B., Vauterin L., Valens M., Rosselló-Mora R., Salkinoja-Salonen M. S. 2002; Thermomonas haemolytic a gen. nov., sp. nov. a γ -proteobacterium from kaolin slurry. Int J Syst Evol Microbiol 52473–483
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Finkmann W., Altendorf K., Stackebrandt E., Lipski A. 2000; Characterization of N2O-producing Xanthomonas -like isolates from biofilters as Stenotrophomonas nitritireducens sp.nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50:273–282 [CrossRef]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol 1:138–146
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Johansen J. E., Binnerup S. J., Kroer N., Mølbak L. 2005; Luteibacter rhizovicinus gen. nov., sp. nov., a yellow-pigmented gammaproteobacterium isolated from the rhizosphere of barley ( Hordeum vulgare L.). Int J Syst Evol Microbiol 55:2285–2291 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  14. Klatte S., Rainey F. A., Kroppenstedt R. M. 1994; Transfer of Rhodococcus aichiensis Tsukamurella 1982 and Nocardia amarae Lechevalier & Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int J Syst Bacteriol 44:769–773 [CrossRef]
    [Google Scholar]
  15. Kouker G., Jaeger K. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  16. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  17. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. (editors) 1992 International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Lee E. M., Jeon C. O., Choi I., Chang K.-S., Kim C.-J. 2005; Silanimonas lenta gen. nov., sp. nov. a slightly thermophilic and alkaliphilic gammaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 55:385–389 [CrossRef]
    [Google Scholar]
  19. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  21. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a district actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  22. Saddler G. S., Bradbury J. F. 2005; Family I. Xanthomonadaceae fam. nov. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2 ( The Proteobacteria ), part B ( The Gammaproteobacteria)p– 63 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  23. Saha P., Krishnamurthi S., Mayilraj S., Prasad G. S., Bora T. C., Chakrabarti T. 2005; Aquimonas voraii gen. nov., sp. nov. a novel gammaproteobacterium isolated from a warm spring of Assam, India. Int J Syst Evol Microbiol 55:1491–1495 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbour-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sasser M. 1990 Identification of Bacteria by Gas chromatography of Cellular Fatty Acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Tarrand J. J., Groschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774
    [Google Scholar]
  28. Ten L. N., Im W.-T., Kim M.-K., Kang M. S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccarovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  31. Vauterin L., Hoste B., Kersters K., Swings J. 1995; Reclassification of Xanthomonas . Int J Syst Bacteriol 45:472–489 [CrossRef]
    [Google Scholar]
  32. Vauterin L., Yang P., Swings J. 1996; Utilization of fatty acid methyl esters for the differentiation of new Xanthomonas species. Int J Syst Bacteriol 46:298–304 [CrossRef]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  34. Xie C.-H., Yokota A. 2005; Dyella japonica gen. nov., sp. nov., a γ -proteobacterium isolated from soil. Int J Syst Evol Microbiol 55:753–756 [CrossRef]
    [Google Scholar]
  35. Yoon J.-H., Kang S.-J., Oh T.-K. 2006; Dokdonella koreensis gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:145–150 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64472-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64472-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error