1887

Abstract

A bacterial strain, designated Dant 3-8, isolated from the gut of the termite , was investigated by a polyphasic taxonomic approach. The cells were rod-shaped, Gram-negative, non-pigmented, non-spore-forming and non-fermentative. Phylogenetic analyses using the 16S rRNA gene sequence showed that the strain formed a monophyletic branch towards the periphery of the evolutionary radiation occupied by the genus , its closest neighbours being DSM 50244 (96.4 % sequence similarity), KCTC 12005 (96.0 %) and DSM 7099 (96.2 %). Strain Dant 3-8 was clearly distinguished from all of these strains by using phylogenetic analysis, DNA–DNA hybridization, whole-cell protein profiles, fatty acid composition data and a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that Dant 3-8 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is Dant 3-8 (=BCRC 17576=LMG 23579).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64551-0
2007-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/887.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64551-0&mimeType=html&fmt=ahah

References

  1. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496
    [Google Scholar]
  2. Chang Y. H., Han J. I., Chun J., Lee K. C., Rhee M. S., Kim Y. B., Bae K. S. 2002; Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol 52:377–381
    [Google Scholar]
  3. Chen W. M., Laevens S., Lee T. M., Coenye T., de Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [CrossRef]
    [Google Scholar]
  4. Chung Y. C., Kobayashi T., Kanai H., Akiba T., Kudo T. 1995; Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococccus profundus DT5432. Appl Environ Microbiol 61:1502–1506
    [Google Scholar]
  5. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962, gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962, sp. nov., nom. rev. Int J Syst Bacteriol 35443–453 [CrossRef]
    [Google Scholar]
  6. Etchebehere C., Errazquin M. I., Dabert P., Moletta R., Muxi L. 2001; Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int J Syst Evol Microbiol 51:977–983 [CrossRef]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Gumaelius L., Magnusson G., Pettersson B., Dalhammar G. 2001; Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51:999–1006 [CrossRef]
    [Google Scholar]
  9. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–12 [CrossRef]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  13. Pot B., Vandamme P., Kersters K. 1994 Analysis of electrophoretic whole-organism protein fingerprints. In Modern Microbial Methods ( Chemical Methods Prokaryotic Systematics Series ) pp  493–521 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  15. Tago Y., Yokota A. 2004; Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. J Gen Appl Microbiol 50:243–248 [CrossRef]
    [Google Scholar]
  16. Wauters G., De Baere T., Willems A., Falsen E., Vaneechoutte M. 2003; Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena . Int J Syst Evol Microbiol 53:859–862 [CrossRef]
    [Google Scholar]
  17. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64551-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64551-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error