1887

Abstract

A novel methanotroph, strain LC 2, was isolated from the littoral sediment of Lake Constance by enrichment in opposing gradients of methane and oxygen, followed by traditional isolation methods. Strain LC 2 grows on methane or methanol as its sole carbon and energy source. It is a Gram-negative, non-motile, pale-pink-coloured methanotroph showing typical intracytoplasmic membranes arranged in stacks. Cells are coccoid, elliptical or rod-shaped and occur often in pairs. Strain LC 2 grows at low oxygen concentrations and in counter-gradients of methane and oxygen. It can grow on medium free of bound nitrogen, possesses the gene and fixes atmospheric nitrogen at low oxygen pressure. It grows at neutral pH and at temperatures between 10 and 30 °C. Phylogenetically, it is most closely related to the genus , with the type strains of and showing 94 and 93.4 % 16S rRNA gene sequence similarity, respectively. Furthermore, the gene sequence of strain LC 2 is most closely related to gene sequences of strains (92 % similar to sp. LW 12 by deduced amino acid sequence identity). The DNA G+C content is 49.9 mol% and the major cellular fatty acid is 16 : 17 (60 %). Strain LC 2 (=JCM 14076=DSM 18750) is described as the type strain of a novel species within a new genus, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64574-0
2007-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1073.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64574-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef]
    [Google Scholar]
  3. Auman A., Speake C. C., Lidstrom M. E. 2001; nifH sequences and nitrogen fixation in Type I and Type II methanotrophs. Appl Environ Microbiol 67:4009–4016 [CrossRef]
    [Google Scholar]
  4. Bodelier P. L. E., Meima-Franke M., Zwart G., Laanbroek H. J. 2005; New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiol Ecol 52:163–174 [CrossRef]
    [Google Scholar]
  5. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Stackebrandt E. 1995; The phylogenetic position of the family Methylococcaceae . Int J Syst Bacteriol 45:182–185 [CrossRef]
    [Google Scholar]
  7. Bussmann I., Pester M., Brune A., Schink B. 2004; Preferential cultivation of type II methanotrophic bacteria from littoral sediments (Lake Constance). FEMS Microbiol Ecol 47:179–189 [CrossRef]
    [Google Scholar]
  8. Bussmann I., Rahalkar M., Schink B. 2006; Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol Ecol 56:331–344 [CrossRef]
    [Google Scholar]
  9. Costello A. M., Lidstrom M. E. 1999; Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074
    [Google Scholar]
  10. Dedysh S. N., Knief C., Dunfield P. F. 2005; Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670 [CrossRef]
    [Google Scholar]
  11. Eller G., Deines P., Grey J., Richnow H.-H., Krüger M. 2005; Methane cycling in lake sediments and its influence on chironomid larval δ 13C. FEMS Microbiol Ecol 54:339–350 [CrossRef]
    [Google Scholar]
  12. Graham D. W., Korich D. G., Leblanc R. P., Sinclair N. A., Arnold R. G. 1992; Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:2231–2236
    [Google Scholar]
  13. Holmes A. J., Owens N. J. P., Murrell J. C. 1995; Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology 141:1947–1955 [CrossRef]
    [Google Scholar]
  14. Hoppert M., Holzenburg A. 1998 Electron Microscopy in Microbiology Oxford: BIOS Scientific;
    [Google Scholar]
  15. Lin J.-L., Joye S. B., Scholten J. C. M., Schäfer H., McDonald I. R., Murrell J. C. 2005; Analysis of methane monooxygenase genes in Mono Lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure. Appl Environ Microbiol 71:6458–6462 [CrossRef]
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  17. McDonald I. R., Smith K., Lidstrom M. E. 2005; Methanotrophic populations in estuarine sediment from Newport Bay, California. FEMS Microbiol Lett 250:287–293 [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  19. Nercessian O. G., Noyes E., Kaluyzhnaya M. G., Lidstrom M. E., Chistoserdova L. 2005; Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol 71:6885–6899 [CrossRef]
    [Google Scholar]
  20. Pester M., Friedrich M. W., Schink B., Brune A. 2004; pmoA -based analysis of methanotrophs in a littoral lake sediment reveals a diverse and stable community in a dynamic environment. Appl Environ Microbiol 70:3138–3142 [CrossRef]
    [Google Scholar]
  21. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [CrossRef]
    [Google Scholar]
  22. Roth J., Bendayan M., Carlemalm E., Villiger W., Garavito M. 1981; Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–671 [CrossRef]
    [Google Scholar]
  23. Stoecker K., Bendinger B., Schoning B., Nielsen P. H., Nielsen J. L., Baranyi C., Toenshoff E. R., Daims H., Wagner M. 2006; Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 103:2363–2367 [CrossRef]
    [Google Scholar]
  24. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  25. Tourova T. P., Omel'chenko M. V., Fegeding K. V., Vasiléva L. V. 1999; The phylogenetic position of Methylobacter psychrophilus sp. nov. Microbiology (English translation of Mikrobiologiia) 68:568–570
    [Google Scholar]
  26. Vela G. R., Wyss O. 1964; Improved stain for visualization of Azotobacter encystment. J Bacteriol 87:476–477
    [Google Scholar]
  27. Wartiainen I., Hestnes A. G., McDonald I. R., Svenning M. M. 2006; Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N. Int J Syst Evol Microbiol 56:109–113 [CrossRef]
    [Google Scholar]
  28. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
  29. Widdel F. 1988; Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In Biology of Anaerobic Microorganisms pp  469–585 Edited by Zehnder A. J. Chichester: Wiley;
    [Google Scholar]
  30. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of a new sulfate-reducer enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400 [CrossRef]
    [Google Scholar]
  31. Wise M. G., McArthur J., Shimkets L. J. 2001; Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov. novel type I methanotrophs. Int J Syst Evol Microbiol 51:611–621
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64574-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64574-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error