1887

Abstract

Three Gram-negative, non-motile, non-spore-forming short rods (strains PB56, PB180, PB229) were isolated from soil in South Korea. Cells were orange–red in colour. Strains PB180 and PB229 contained small amounts of bacteriochlorophyll , which was not detected in strain PB56. However, all three isolates contained the genes for the photosynthetic type II reaction centre, . They contained Q-10 as the dominant quinone and C as the dominant fatty acid. The highest 16S rRNA gene sequence similarities were found to JCM 12082 (95.8 %), KCTC 2882 (95.1 %), IFO 15500 (95.1 %), DSM 14747 (94.8 %), IFO 15498 (94.7 %) and KCTC 2881 (94.6 %), as well as to Y2 and 3-2W4 (95.0–95.2 %). Phylogenetic analyses supported the assignment of strains PB56, PB180, PB229 to the genus . The novel isolates differ from all established species of the genus by their higher G+C content and the absence of straight-chain 2-hydroxy fatty acids. Based on the phylogenetic distances from species with validly published names and their phenotypic properties, the strains constitute a separate species, for which the name sp. nov. is proposed. The type strain is PB56 (=KCTC 12334=DSM 16846).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64579-0
2007-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1527.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64579-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Busse H.-J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov.,air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Hauser E., Kämpfer P. 2005; Description of two novel species, Sphingomonas abaci sp.nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 55:2565–2569 [CrossRef]
    [Google Scholar]
  5. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Gich F., Overmann J. 2006; Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a -containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56:847–854 [CrossRef]
    [Google Scholar]
  9. Hiraishi A., Yonemitsu Y., Matsushita M., Shin Y. K., Kuraishi H., Kawahara K. 2002; Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol 178:45–52 [CrossRef]
    [Google Scholar]
  10. Jiao N., Sieracki M. E., Zhang Y., Du H. 2003; Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems. Chin Sci Bull 48:1064–1068 (in Chinese with English summary [CrossRef]
    [Google Scholar]
  11. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  12. Koblízek M., Béjà O., Bidigare R. R., Christensen S., Benitez-Nelson B., Vetriani C., Kolber M. K., Falkowski P. G., Kolber Z. S. 2003; Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338 [CrossRef]
    [Google Scholar]
  13. Kolber Z. S., Plumley F. G., Lang A. S., Beatty J. T., Blankenship R. E., VanDover C. L., Vetriani C., Koblízek M., Rathgeber C., Falkowski P. G. 2001; Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495 [CrossRef]
    [Google Scholar]
  14. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  15. Lee J.-S., Shin Y. K., Yoon J.-H., Takeuchi M., Pyun Y.-R., Park Y.-H. 2001 Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51, 1491–1498
  16. Maruyama T., Park H.-D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. nov., sp. nov. a microcystin-degrading bacterium. Int J Syst Evol Microbiol 5685–89 [CrossRef]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  18. Nagashima K. V. P., Hiraishi A., Shimada K., Matsuura K. 1997; Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45:131–136 [CrossRef]
    [Google Scholar]
  19. Ohta H., Hattori R., Ushiba Y., Mitsui H., Ito M., Watanabe H., Tonosaki A., Hatori T. 2004; Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int J Syst Evol Microbiol 54:2185–2190 [CrossRef]
    [Google Scholar]
  20. Permentier H. P., Schmidt K. A., Kobayashi M., Akiyama M., Hager-Braun C., Neerken S., Miller M., Amesz J. 2000; Composition and optical properties of reaction center core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum . Photosynth Res 64:27–39 [CrossRef]
    [Google Scholar]
  21. Rainey F. A., Silva J., Nobre M. F., Silva M. T., da Costa M. S. 2003; Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a -containing species. Int J Syst Evol Microbiol 53:35–41 [CrossRef]
    [Google Scholar]
  22. Rosselló-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  25. Shin Y. K., Lee J.-S., Chun C. O., Kim H.-J., Park Y.-H. 1996; Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T . J Microbiol Biotechnol 6:68–69
    [Google Scholar]
  26. Takaichi S. 1999; Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In Advances in Photosynthesis , vol. 8, The Photochemistry of Carotenoids pp  39–69 Edited by Frank H. A., Young A. J., Britton G., Cogdell R. J. Dordrecht: Kluwer;
    [Google Scholar]
  27. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. 1995; Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45:334–341 [CrossRef]
    [Google Scholar]
  28. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  29. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  31. Yabuuchi E., Kosako Y. 2005; Order IV. Sphingomonadales ord. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol. 2, part C pp  230–233 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  32. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
  33. Yoon J.-H., Lee S.-T., Kim S.-B., Kim W. Y., Goodfellow M., Park Y.-H. 1997; Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 47:111–114 [CrossRef]
    [Google Scholar]
  34. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  35. Yoon J.-H., Lee M.-H., Oh T.-K. 2004; Porphyrobacter donghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 54:2231–2235 [CrossRef]
    [Google Scholar]
  36. Yoon J.-H., Kang S.-J., Lee M.-H., Oh H. W., Oh T.-K. 2006; Porphyrobacter dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 56:1079–1083 [CrossRef]
    [Google Scholar]
  37. Yun N. R., Shin Y. K., Hwang S. Y., Kuraishi H., Sugiyama J., Kawahara K. 2000; Chemotaxonomic and phylogenetic analyses of Sphingomonas strains isolated from ears of plants in the family Gramineae and a proposal of Sphingomonas roseiflava sp. nov.. J Gen Appl Microbiol 46:9–18 [CrossRef]
    [Google Scholar]
  38. Yurkov V., Stackebrandt E., Holmes A., Fuerst J. A., Hugenholtz P., Golecki J., Gad'on N., Gorlenko V. M., Kompantseva E. I., Drews G. 1994; Phylogenetic positions of novel aerobic, bacteriochlorophyll a -containing bacteria and description of Roseococcus thiosulfatophilus gen.nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov. and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434 [CrossRef]
    [Google Scholar]
  39. Yurkov V., Stackebrandt E., Buss O., Vermeglio A., Gorlenko V., Beatty J. T. 1997; Reorganization of the genus Erythromicrobium : description of ‘ Erythromicrobium sibiricum ’ as Sandaracinobacter sibiricus gen.nov., sp. nov., and of ‘ Erythromicrobium ursincola ’ as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Bacteriol 47:1172–1178 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64579-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64579-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error