1887

Abstract

A few members of the family are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus , with LMG 1527 as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as -alanine, -cysteine and -threonine served as carbon and nitrogen sources for growth of strain RG3. Strain RG3 produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2–27.77 % DNA–DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name sp. nov. is proposed, with the type strain RG3 (=LMG 23726=MTCC 6913).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64638-0
2007-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/353.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64638-0&mimeType=html&fmt=ahah

References

  1. Blanc P. J. 1996; Characterization of the tea fungus metabolites. Biotechnol Lett 18:139–142 [CrossRef]
    [Google Scholar]
  2. Boesch C., Trček J., Sievers M., Teuber M. 1998; Acetobacter intermedius sp. nov. Syst Appl Microbiol 21:220–229 [CrossRef]
    [Google Scholar]
  3. Cavalcante V., Döbereiner J. 1988; A new acid tolerant nitrogen-fixing bacterium associated with the sugarcane. Plant Soil 108:23–31 [CrossRef]
    [Google Scholar]
  4. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter , with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558 [CrossRef]
    [Google Scholar]
  5. Dellaglio F., Cleenwerck I., Felis G. E., Engelbeen K., Janssens D., Marzotto M. 2005; Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55:2365–2370 [CrossRef]
    [Google Scholar]
  6. Dutta D., Gachhui R. 2006; Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56:1899–1903 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Forng E. R., Anderson S. M., Cannon R. E. 1989; Synthetic medium for Acetobacter xylinum that can be used for isolation of auxotrophic mutants and study of cellulose biosynthesis. Appl Environ Microbiol 55:1317–1319
    [Google Scholar]
  9. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  10. Franke I. H., Fegan M., Hayward A. C., Sly L. I. 1998; Nucleotide sequence of the nifH gene coding for nitrogen reductase in the acetic acid bacterium Acetobacter diazotrophicus . Lett Appl Microbiol 26:12–16 [CrossRef]
    [Google Scholar]
  11. Franke I. H., Fegan M., Hayward A. C., Leonard G., Stackebrandt E., Sly L. I. 1999; Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49:1681–1693 [CrossRef]
    [Google Scholar]
  12. Fuentes-Ramírez L. E., Bustillos-Cristales R., Tapia-Herńandez A., Jiménez-Salgado T., Wang E. T., Martínez-Romero E., Caballero-Mellado J. 2001; Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314
    [Google Scholar]
  13. Gillis M., Kersters K., Hoste B., Janssens D., Kroppenstedt R. M., Stephan M. P., Teixeria K. R. S., Döbereiner J., De Ley J. 1989; Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364 [CrossRef]
    [Google Scholar]
  14. Gosselé F., Swings J., Kesters K., Pauwels P., De Ley J. 1983; Numerical analysis of phenotypic features and protein gel electropherograms of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898. Syst Appl Microbiol 4:338–368 [CrossRef]
    [Google Scholar]
  15. Greenberg D. E., Porcella S. F., Stock F., Wong A., Conville P. S., Murray P. R., Holland S. M., Zelazny A. M. 2006; Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae . Int J Syst Evol Microbiol 56:2609–2616 [CrossRef]
    [Google Scholar]
  16. Hestrin S., Schramm M. 1954; Synthesis of cellulose by Acetobacter xylinum . Biochem J 58:345–352
    [Google Scholar]
  17. Jimenez-Salgado T., Fuentes-Ramírez L. E., Tapia-Herńandez A., Mascarúa-Esparza M. A., Martínez-Romero E., Caballero-Mellado J. 1997; Coffea arabica L., a new host plant for Acetobacter diazotrophicus , and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol 63:3676–3683
    [Google Scholar]
  18. Jojima Y., Mihara Y., Suzuki S., Yokozeki K., Yamanaka S., Fudou R. 2004; Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54:2263–2267 [CrossRef]
    [Google Scholar]
  19. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  20. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov., and Sulfitobacter brevis sp. nov., α -3- Proteobacteria from hypersaline, heliothermal and meromictic Antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  21. Lee S., Sevilla M., Meletzus D., Gunapala N., Kennedy C. 2000; Characterization of nitrogen fixation genes and plant-growth promoting properties in Acetobacter diazotrophicus , an endophyte of sugarcane. In Plant–Microbe Interactions vol. 5 pp  196–204 Edited by Stacey G., Keen N. T. St Paul, MN: American Phytopathological Society;
    [Google Scholar]
  22. Lisdiyanti P., Kawasaki H., Widyastuti Y., Saono S., Seki T., Yamada Y., Uchimura T., Komagata K. 2002; Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the α-Proteobacteria . Int J Syst Evol Microbiol 52:813–818 [CrossRef]
    [Google Scholar]
  23. Lisdiyanti P., Navarro R. R., Uchimura T., Komagata K. 2006; Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp.nov. and Gluconacetobacter nataicola sp. nov.. Int J Syst Evol Microbiol 56:2101–2111 [CrossRef]
    [Google Scholar]
  24. Loganathan P., Nair S. 2004; Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice ( Porteresia coarctata Tateoka. Int J Syst Evol Microbiol 54:1185–1190 [CrossRef]
    [Google Scholar]
  25. Lu S.-F., Lee F.-L., Chen H.-K. 1999; A thermotolerant and high acetic-acid producing bacterium Acetobacter sp. 114-2. J Appl Microbiol 86:55–62 [CrossRef]
    [Google Scholar]
  26. Muthukumarasamy R., Revathi G., Seshadri S., Lakshminarsimhan C. 2002; Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus ), a promising diazotrophic endophyte in tropics. Curr Sci 83:137–145
    [Google Scholar]
  27. Muthukumarasamy R., Cleenwerck I., Revathi G., Vadivelu M., Janssens D., Hoste B., Gum K. U., Park K. D., Son C. Y. other authors 2005; Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286 [CrossRef]
    [Google Scholar]
  28. Navarro R. R., Komagata K. 1999; Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. J Gen Appl Microbiol 45:7–15 [CrossRef]
    [Google Scholar]
  29. Navarro R. R., Uchimura T., Komagata K. 1999; Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii . J Gen Appl Microbiol 45:295–300 [CrossRef]
    [Google Scholar]
  30. Schüller G., Hertel C., Hammes W. P. 2000; Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 50:2013–2020 [CrossRef]
    [Google Scholar]
  31. Sokollek S. J., Hertel C., Hammes W. P. 1998; Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48:935–940 [CrossRef]
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  33. Stal L. J. 1988; Nitrogen fixation in cyanobacterial mats. Methods Enzymol 167:475–484
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  35. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  36. Yamada Y., Hoshino K., Ishikawa T. 1997; The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251 [CrossRef]
    [Google Scholar]
  37. Yamada Y., Katsura K., Kawasaki H., Widyastuti Y., Saono S., Seki T., Uchimura T., Komagata K. 2000; Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α - Proteobacteria . Int J Syst Evol Microbiol 50:823–829 [CrossRef]
    [Google Scholar]
  38. Yukphan P., Malimas T., Potacharoen W., Tanasupawat S., Tanticharoen M., Yamada Y. 2005; Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the alpha-Proteobacteria. J Gen Appl Microbiol 51:301–311 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64638-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64638-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error