1887

Abstract

The group comprises eight closely related species that are indistinguishable from one another by 16S rRNA gene sequence analysis. Therefore, the gene, which encodes the subunit B protein of DNA gyrase, was selected as an alternative phylogenetic marker. To determine whether gene sequence analysis could be used for phylogenetic analysis and species identification of members of the group, the congruence of grouping with both 16S rRNA gene sequencing and DNA–DNA hybridization data was evaluated. Ranges of nucleotide and translated amino acid sequence similarities among the eight type strains were 75.4–95.0 % and 88.5–99.2 %, respectively, whereas 16S rRNA gene sequence similarities were 98.1–99.8 %. Results showed that gene sequences provide higher resolution than 16S rRNA gene sequences. The classification achieved by sequence analysis was in agreement with results obtained with DNA–DNA hybridization. It is concluded that the gene may be an efficient alternative target for identification and taxonomic analysis of members of the group.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64685-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/8/1846.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64685-0&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A., Dorsch M., Stackebrandt E., Collins M. D. 1991; Comparative analysis of Bacillus anthracis , Bacillus cereus , and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:343–346 [CrossRef]
    [Google Scholar]
  2. Chelo I. M., Zé-Zé L., Tenreiro R. 2007; Congruence of evolutionary relationships inside the Leuconostoc Oenococcus Weissella clade assessed by phylogenetic analysis of the 16S rRNA gene,dnaA , gyrB , rpoC and dnaK . Int J Syst Evol Microbiol 57:276–286 [CrossRef]
    [Google Scholar]
  3. Chern L.-L., Stackebrandt E., Lee S.-F., Lee F.-L., Chen J.-K., Fu H.-M. 2004; Chitinibacter tainanensis gen. nov., sp. nov. a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 54:1387–1391 [CrossRef]
    [Google Scholar]
  4. Christensen H., Nordentoft S., Olsen J. E. 1998; Phylogenetic relationships of Salmonella based on rRNA sequences. Int J Syst Bacteriol 48:605–610 [CrossRef]
    [Google Scholar]
  5. Chun J., Bae K. S. 2000; Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 78:123–127 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Fukushima M., Kakinuma K., Kawaguchi R. 2002; Phylogenetic analysis of Salmonella, Shigella , and Escherichia coli strains on the basis of the gyrB gene sequence. J Clin Microbiol 40:2779–2785 [CrossRef]
    [Google Scholar]
  10. Huang W. M. 1996; Bacterial diversity based on type II DNA topoisomerase genes. Annu Rev Genet 30:79–107 [CrossRef]
    [Google Scholar]
  11. Joung K. B., Cote J. C. 2002; Evaluation of ribosomal RNA gene restriction patterns for the classification of Bacillus species and related genera. J Appl Microbiol 92:97–108 [CrossRef]
    [Google Scholar]
  12. Kasai H., Ezaki T., Harayama S. 2000; Differentiation of phylogenetically related slowly growing mycobacteria by their gyrB sequences. J Clin Microbiol 38:301–308
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  14. Ko K. S., Kim J. W., Kim J. M., Kim W., Chung S. I., Kim I. J., Kook Y. H. 2004; Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene. Infect Immun 72:5253–5261 [CrossRef]
    [Google Scholar]
  15. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  16. La Duc M. T., Satomi M., Agata N., Venkateswaran K. 2004; gyrB as a phylogenetic discriminator for members of the Bacillus anthracis cereus thuringiensis group. J Microbiol Methods 56:383–394 [CrossRef]
    [Google Scholar]
  17. Martínez-Murcia A. J., Benlloch S., Collins M. D. 1992; Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA–DNA hybridization. Int J Syst Bacteriol 42:412–421 [CrossRef]
    [Google Scholar]
  18. Nakamura L. K. 1989; Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int J Syst Bacteriol 39:295–300 [CrossRef]
    [Google Scholar]
  19. Nakamura L. K., Roberts M. S., Cohan F. M. 1999; Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp.subtilis subsp. nov. and Bacillussubtilis subsp. spizizenii subsp. nov.. Int J Syst Bacteriol 49: 1211–1215 [CrossRef]
    [Google Scholar]
  20. Niemann S., Harmsen D., Rusch-Gerdes S., Richter E. 2000; Differentiation of clinical Mycobacterium tuberculosis complex isolates by gyrB DNA sequence polymorphism analysis. J Clin Microbiol 38:3231–3234
    [Google Scholar]
  21. Palmisano M. M., Nakamura L. K., Duncan K. E., Istock C. A., Cohan F. M. 2001; Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis , isolated from soil in the Sonoran Desert, Arizona. Int J Syst Evol Microbiol 51:1671–1679 [CrossRef]
    [Google Scholar]
  22. Priest F. G., Goodfellow M., Shute L. A., Berkeley R. C. W. 1987; Bacillus amyloliquefaciens sp. nov., nom. rev.. Int J Syst Bacteriol 3769–71 [CrossRef]
    [Google Scholar]
  23. Roberts M. S., Nakamura L. K., Cohan F. M. 1994; Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44:256–264 [CrossRef]
    [Google Scholar]
  24. Roberts M. S., Nakamura L. K., Cohan F. M. 1996; Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis , isolated from soil in Death Valley, California. Int J Syst Bacteriol 46:470–475 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Skerman V. B. D., McGowan V., Sneath P. H. A. (editors) 1980; Approved lists of bacterial names. Int J Syst Bacteriol 30225–420 [CrossRef]
    [Google Scholar]
  27. Smith N. R., Gibson T., Gordon R. E., Sneath P. H. 1964; Type cultures and proposed neotype cultures of some species in the genus Bacillus . J Gen Microbiol 34:269–272 [CrossRef]
    [Google Scholar]
  28. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  29. Tai C. J., Kuo H. P., Lee F. L., Chen H. K., Yokota A., Lo C. C. 2006; Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56:1771–1776 [CrossRef]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  31. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  32. Watt P. M., Hickson I. D. 1994; Structure and function of type II DNA topoisomerases. Biochem J 303:681–695
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  34. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  35. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  36. Yamamoto S., Harayama S. 1996; Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511 [CrossRef]
    [Google Scholar]
  37. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB , rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819 [CrossRef]
    [Google Scholar]
  38. Yamamoto S., Bouvet P. J., Harayama S. 1999; Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95 [CrossRef]
    [Google Scholar]
  39. Yáñez M. A., Catalán V., Apráiz D., Figueras M. J., Martínez-Murcia A. J. 2003; Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol 53:875–883 [CrossRef]
    [Google Scholar]
  40. Zeigler D. R. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64685-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64685-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error