1887

Abstract

Moderately thermophilic, acidophilic, spore-forming bacteria (146 strains) were isolated from various beverages and environments. Based on the results of sequence analysis of the hypervariable region of the 16S rRNA gene, eight of the strains represent novel species of the genus . These strains were designated 3-A191, 4-A336, 5-A83J, 5-A167N, 5-A239-2O-A, E-8, RB718 and S-TAB. Phylogenetic analyses of 16S rRNA and DNA gyrase B subunit () nucleotide sequences confirmed that the eight strains belonged to the clade. Cells of the eight strains were Gram-positive or Gram-variable, strictly aerobic and rod-shaped. The strains grew well under acidic and moderately thermal conditions, produced acid from various sugars, contained menaquinone 7 as the major isoprenoid quinone and did not produce guaiacol. -Alicyclic fatty acids were the predominant lipid component of strains 4-A336, 5-A83J, 5-A167N, RB718 and S-TAB. No -alicyclic fatty acids were detected in strains 3-A191, 5-A239-2O-A or E-8, but iso- and anteiso-branched fatty acids and small amounts of straight-chain saturated fatty acids were detected instead. According to the DNA–DNA hybridization data and distinct morphological, physiological, chemotaxonomical and genetic traits, the eight strains represent six novel species within the genus , for which the following names are proposed: sp. nov. (type strain 3-A191=DSM 17975=IAM 15224), sp. nov. (type strain S-TAB=DSM 17978=IAM 15229), sp. nov. (type strain 5-A83J=DSM 17979=IAM 15227), sp. nov. (type strain 5-A239-2O-A=DSM 17980=IAM 15370), sp. nov. (type strain RB718=DSM 17974=IAM 15230) and sp. nov. (type strain 4-A336=DSM 17981=IAM 15226).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64692-0
2007-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1276.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64692-0&mimeType=html&fmt=ahah

References

  1. Adachi T., Mizuuchi M., Robinson E. A., Appella E., O'Dea M. H., Gellert M., Mizuuchi K. 1987; DNA sequence of the E. coli gyr B gene: application of a new sequencing strategy. Nucleic Acids Res 15:771–784 [CrossRef]
    [Google Scholar]
  2. Albuquerque L., Rainey F. A., Chung A. P., Sunna A., Nobre M. F., Grote R., Antranikian G., De Costa M. S. 2000; Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of São Miguel in the Azores. Int J Syst Evol Microbiol 50:451–457 [CrossRef]
    [Google Scholar]
  3. Borlinghaus A., Engel R. 1997; Alicyclobacillus incidence in commercial apple juice concentrate (AJC) supplies – method development and validation. Fruit Processing 7:262–266
    [Google Scholar]
  4. Cerny G., Hennlich W., Poralla K. 1984; Fruchtsaftverderb durch Bacillen: isolierung und charakterisierung des verderbserregers. Z Lebens Unters Forsch 179:224–227 (in German [CrossRef]
    [Google Scholar]
  5. Darland G., Brock T. D. 1971; Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67:9–15 [CrossRef]
    [Google Scholar]
  6. Deinhard G., Blanz P., Poralla K., Altan E. 1987a; Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst Appl Microbiol 10:47–53 [CrossRef]
    [Google Scholar]
  7. Deinhard G., Saar J., Krischke W., Poralla K. 1987b; Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing ω -cycloheptane fatty acids. Syst Appl Microbiol 10:68–73 [CrossRef]
    [Google Scholar]
  8. Dufresne S., Bousquet J., Boissinot M., Guay R. 1996; Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, Gram-positive, spore-forming bacterium. Int J Syst Bacteriol 46:1056–1064 [CrossRef]
    [Google Scholar]
  9. Duong H.-A., Jensen N. 2000; Spoilage of iced tea by Alicyclobacillus . Food Australia 52:292
    [Google Scholar]
  10. Eiroa M. N. U., Junqueira V. C. A., Schmidt F. 1999; Alicyclobacillus in orange juice: occurrence and heat resistance of spores. J Food Protection 62:883–886
    [Google Scholar]
  11. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  13. Goto K., Matsubara H., Mochida K., Matsumura T., Hara Y., Niwa M., Yamasato K. 2002a; Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω -cycloheptane fatty acids, isolated from herbal tea. Int J Syst Evol Microbiol 52:109–113
    [Google Scholar]
  14. Goto K., Tanimoto Y., Tamura T., Mochida K., Arai D., Asahara M., Suzuki M., Tanaka H., Inagaki K. 2002b; Identification of thermoacidophilic bacteria and a new Alicyclobacillus genomic species isolated from acidic environments in Japan. Extremophiles 6:333–340 [CrossRef]
    [Google Scholar]
  15. Goto K., Mochida K., Asahara M., Suzuki M., Yokota A. 2002c; Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus . J Gen Appl Microbiol 48:243–250 [CrossRef]
    [Google Scholar]
  16. Goto K., Mochida K., Asahara M., Suzuki M., Kasai H., Yokota K. 2003; Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω -alicyclic fatty acids, and emended description of the genus Alicyclobacillus . Int J Syst Evol Microbiol 53:1537–1544 [CrossRef]
    [Google Scholar]
  17. Goto K., Mochida K., Kato Y., Asahara M., Ozawa C., Kasai H., Yokota A. 2006; Diversity of Alicyclobacillus isolated from fruit juices and their raw materials, and emended description of Alicyclobacillus acidocaldarius . Microbiol Cult Coll 22:1–14
    [Google Scholar]
  18. Hippchen B., Roll A., Poralla K. 1981; Occurrence in soil of thermo-acidophilic bacilli possessing ω -cyclohexane fatty acids and hopanoids. Arch Microbiol 129:53–55 [CrossRef]
    [Google Scholar]
  19. Hiraishi A., Inagaki K., Tanimoto Y., Iwasaki M., Kishimoto N., Tanaka H. 1997; Phylogenetic characterization of a new thermoacidophilic bacterium isolated from hot spring in Japan. J Gen Appl Microbiol 43:295–304 [CrossRef]
    [Google Scholar]
  20. Jensen N. 2000; Alicyclobacillus in Australia. Food Australia 52:282–285
    [Google Scholar]
  21. Karavaiko G. I., Bogdanova T. I., Tourova T. P., Kondrat'eva T. F., Tsaplina I. A., Egorova M. A., Krasil'nikova E. N., Zakharchuk L. M. 2005; Reclassification of ‘ Sulfobacillus thermosulfidooxidans subsp. thermotolerans ’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus . Int J Syst Evol Microbiol 55:941–947 [CrossRef]
    [Google Scholar]
  22. Kasai H., Tamura T., Harayama S. 2000; Intrageneric relationship among Micromonospora species deduced from gyrB -based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 50:127–134 [CrossRef]
    [Google Scholar]
  23. Kato Y., Asahara M., Arai D., Goto K., Yokota A. 2005; Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum . J Gen Appl Microbiol 51:287–299 [CrossRef]
    [Google Scholar]
  24. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequence. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  25. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  26. Lake J. A. 1987; A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191
    [Google Scholar]
  27. Matsubara H., Goto K., Matsumura T., Mochida K., Iwaki M., Niwa M., Yamasato K. 2002; Alicyclobacillus acidiphilus sp. nov., a new thermo-acidophilic ω -alicyclic fatty acid-containing bacterium isolated from acidic beverages. Int J Syst Evol Microbiol 52:1681–1685 [CrossRef]
    [Google Scholar]
  28. Nicolaus B., Improta R., Manca C. M., Lama L., Esposito E., Gambacorta A. 1998; Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann. Polar Biol 19:133–141 [CrossRef]
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  30. Simbahan J., Drijber R., Blum P. 2004; Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Spring. California, USA: Int J Syst Evol Microbiol 54:1703–1707 [CrossRef]
    [Google Scholar]
  31. Sprittstoesser D. F., Churey J. J., Lee C. Y. 1994; Growth characteristics of aciduric sporeforming bacilli isolated from fruit juices. J Food Protection 57:1080–1083
    [Google Scholar]
  32. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  34. Treismen R. 1989; Purification of plasmid DNA. In Molecular Cloning: a Laboratory Manual . , 2nd edn, chapter. 1 pp  40–41 Edited by Sambrook J., Fritsch E. F., Maniatis T. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  35. Tsuruoka N., Isono Y., Shida O., Hemmi H., Nakayama T., Nishio T. 2003; Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. Int J Syst Evol Microbiol 53:1081–1084 [CrossRef]
    [Google Scholar]
  36. Uchino F., Doi S. 1967; Acido-thermophilic bacteria from thermal waters. Agr Biol Chem 31:817–822 [CrossRef]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  38. Wisotzkey J. D., Jurtshuk J. R. P., Fox G. E., Deinhard G., Poralla K. 1992; Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius , Bacillus acidoterrestris , and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269 [CrossRef]
    [Google Scholar]
  39. Wisse C. A., Parish M. 1998; Isolation and enumeration of sporeforming, thermo-acidophilic, rod-shaped bacteria from citrus processing environments. Dairy Food Environ Sanitation 18:504–509
    [Google Scholar]
  40. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyr B genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64692-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64692-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error